1
|
Wu X, Huang J, Tang J, Sun Y, Zhao G, Yan C, Liu Z, Yi W, Xu S, Yu X. Isoginkgetin, a bioactive constituent from Ginkgo Biloba, protects against obesity-induced cardiomyopathy via enhancing Nrf2/ARE signaling. Redox Biol 2022; 57:102485. [PMID: 36162256 PMCID: PMC9516449 DOI: 10.1016/j.redox.2022.102485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity-induced metabolic cardiomyopathy (MC), characterized by lipotoxicity and excessive oxidative stress, emerges as the leading cause of heart failure in the obese patients. Yet, its therapy remains very limited. Here, we demonstrated that isoginkgetin (IGK), a bioactive biflavonoid isolated from medicinal herb Ginkgo Biloba, protected against obesity-induced cardiac diastolic dysfunction and adverse remodeling. Transcriptomics profiling revealed that IGK activated Nrf2 signaling in the heart tissues of the obese mice. Consistent with this observation, IGK treatment increased the nuclear translocation of Nrf2, which in turn trigger the activation of its downstream target genes (e. g. HO-1 and NQO1). In addition, IGK significantly rejuvenated mitochondrial defects in obese heart tissues as evidenced by enhancing mitochondrial respiratory capacity and resisting the collapse of mitochondrial potential and oxidative stress both in vitro and in vivo. Mechanistically, IGK stabilized Nrf2 protein via inhibiting the proteasomal degradation, independent of transcription regulation. Moreover, molecular docking and dynamics simulation assessment demonstrated a good binding mode between IGK and Nrf2/Keap1. Of note, the protective effects conferred by IGK against obesity-induced mitochondrial defects and cardiac dysfunction was compromised by Nrf2 gene silencing both in vitro and in vivo, consolidating a pivotal role of Nrf2 in IGK-elicited myocardial protection against MC. Thus, the present study identifies IGK as a promising drug candidate to alleviate obesity-induced oxidative stress and cardiomyocyte damage through Nrf2 activation, highlighting the therapeutic potential of IGK in ameliorating obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China.
| | - Jianrong Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junyuan Tang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuling Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Cuishi Yan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230037, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230037, China.
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Kim WH, Lee JU, Song S, Kim S, Choi YJ, Sim SJ. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar. Analyst 2019; 144:1768-1776. [DOI: 10.1039/c8an01745j] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of head-flocked gold nanopillars and sandwich DNA probes is an advanced label-free, ultra-high sensitive, multiplexed nanoplasmonic detection system of circulating miRNAs for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Woo Hyun Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Jong Uk Lee
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Sojin Song
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Soohyun Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Young Jae Choi
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| |
Collapse
|
4
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|