1
|
Li X, Wang D, Ding Z, Chen X, Chen L, Ni W, Feng X. Engineering a Hollow Carbon Sphere-Based Triphase Microenvironment for Enhanced Enzymatic Reaction Kinetics and Bioassay Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302634. [PMID: 37376867 DOI: 10.1002/smll.202302634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Electrochemical bioassays based on oxidase reactions are frequently used in biological sciences and medical industries. However, the enzymatic reaction kinetics are severely restricted by the poor solubility and slow diffusion rate of oxygen in conventional solid-liquid diphase reaction systems, which inevitably compromises the detection accuracy, linearity, and reliability of the oxidase-based bioassay. Herein, an effective solid-liquid-air triphase bioassay system is provided that uses hydrophobic hollow carbon spheres (HCSs) as oxygen nanocarriers. The oxygen stored in the cavity of HCS can rapidly diffuse to the oxidase active sites through the mesoporous carbon shell, providing sufficient oxygen for oxidase-based enzymatic reactions. As a result, the triphase system can significantly improve the enzymatic reaction kinetics and obtain a 20-fold higher linear detection range than the normal diphase system. Other biomolecules can also be determined using this triphase technique, and the triphase design strategy offers a new route to address the gas deficiency problem in catalytic reactions that involve gas consumption.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Feng X, Fu H, Bai Z, Li P, Song X, Hu X. Colorimetric detection of glucose by a hybrid nanomaterial based on amplified peroxidase-like activity of ferrosoferric oxide modified with gold–platinum heterodimer. NEW J CHEM 2022. [DOI: 10.1039/d1nj04491e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An easy and sensitive colorimetric sensor based on the Fe3O4@Au–Pt hybrid nanomaterial was constructed for H2O2 and glucose detection.
Collapse
Affiliation(s)
- Xiaoyang Feng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Zhenyu Bai
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Ping Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Xingliang Song
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Xueping Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
3
|
Lu F, Yang S, Ning Y, Wang F, Ji X, He Z. A fluorescence color card for point-of-care testing (POCT) and its application in simultaneous detection. Analyst 2021; 146:5074-5080. [PMID: 34318784 DOI: 10.1039/d1an01035b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus has received much attention because its complications include liver, kidney, eye, heart and cerebrovascular diseases. Thus, it would be highly significant to develop a rapid and efficient method for glucose detection in biological samples. In this work, a point-of-care testing (POCT) method of glucose detection was proposed using a standard colorimetric card for semi-quantitative determination patterns. In the prepared fluorescence color card for glucose, a good linear relationship was acquired by plotting the ratio of the grayscale value (I/I0) versus the logarithm of glucose concentration within 100.0 to 1000.0 μmol L-1, and the LOD of glucose detection was 1.1 μmol L-1. A large number of actual samples (30 serum and 7 urine) were analyzed and the results demonstrated that this method had good potential to be applied in the primary screening of diabetic patients. In addition, this method is universal and can be applied in the simultaneous detection of multiple small molecules. It provides a new strategy for the primary screening of multiple diseases simultaneously, which presents excellent application potential.
Collapse
Affiliation(s)
- Fan Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Sisi Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yu Ning
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Wang H, Zhang J, Wang D, Wang Z, Chen Y, Feng X. Flexible triphase enzyme electrode based on hydrophobic porous PVDF membrane for high-performance bioassays. Biosens Bioelectron 2021; 183:113201. [PMID: 33812291 DOI: 10.1016/j.bios.2021.113201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023]
Abstract
Flexible bioassays based on oxidase-catalyzed and electrocatalytic cascade reactions have been widely reported. However, the fluctuant oxygen level and high anodic potential restricts the detection accuracy. To overcome these challenges, we report here a flexible triphase enzyme electrode by assembling an oxidase enzyme layer and Pt electrocatalysts onto a carbon nanotube film/porous polyvinylidene fluoride hydrophobic substrate. Such a flexible enzyme electrode has an air-liquid-solid triphase reaction zone where oxygen level is air phase dependent (constant and sufficient high), which stabilized the oxidase kinetics and enabled the cathodic measurement of enzymatic product H2O2 with minimum interferents caused from oxygen level fluctuation and many oxidizable species in analyte solution. Furthermore, the flexible triphase enzyme electrode exhibited good mechanical stability even after being bent over 600 times and an excellent air permeability, which are crucial to wearable devices that require long-term skin contact.
Collapse
Affiliation(s)
- Haili Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhaohong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yangru Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
5
|
TiO2/CeO2-CePO4-decorated enzymatic glucose biosensors operating in oxygen-restrictive environments. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Affiliation(s)
- Hai Zhu
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Yu Huang
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
- Zhejiang Institute China University of Geosciences Hangzhou China
| | - Xiaoding Lou
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Fan Xia
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| |
Collapse
|
7
|
Luo X, Xia J, Jiang X, Yang M, Liu S. Cellulose-Based Strips Designed Based on a Sensitive Enzyme Colorimetric Assay for the Low Concentration of Glucose Detection. Anal Chem 2019; 91:15461-15468. [DOI: 10.1021/acs.analchem.9b03180] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu First Road, Donghu New and High
Technology Development Zone, Wuhan 430205, Hubei Province, People’s Republic of China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, People’s Republic of China
| | - Jian Xia
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu First Road, Donghu New and High
Technology Development Zone, Wuhan 430205, Hubei Province, People’s Republic of China
| | - Xiangyang Jiang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu First Road, Donghu New and High
Technology Development Zone, Wuhan 430205, Hubei Province, People’s Republic of China
| | - Mengru Yang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu First Road, Donghu New and High
Technology Development Zone, Wuhan 430205, Hubei Province, People’s Republic of China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430205, Hubei Province, People’s Republic of China
| |
Collapse
|
8
|
Luo J, Ma L, Svec F, Tan T, Lv Y. Reversible Two‐Enzyme Coimmobilization on pH‐Responsive Imprinted Monolith for Glucose Detection. Biotechnol J 2019; 14:e1900028. [DOI: 10.1002/biot.201900028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jingyi Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Liang Ma
- Clinical LaboratoryChina–Japan Friendship Hospital Beijing 100029 China
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
9
|
Wang Z, Kong W, Si L, Niu J, Liu Y, Yin L, Tian Z. Robust and Thermally Stable Butterfly-Like Co(OH)2/Hexadecyltrimethoxysilane Superhydrophobic Mesh Filters Prepared by Electrodeposition for Highly Efficient Oil/Water Separation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongde Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wei Kong
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lianxi Si
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Junjian Niu
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ye Liu
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Longping Yin
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhigang Tian
- Shanxi Industrial Technology Development Research Center, Taiyuan 030072, China
| |
Collapse
|
10
|
Wang Y, Lai H, Cheng Z, Zhang H, Zhang E, Lv T, Liu Y, Jiang L. Gecko toe pads inspired in situ switchable superhydrophobic shape memory adhesive film. NANOSCALE 2019; 11:8984-8993. [PMID: 31017157 DOI: 10.1039/c9nr00154a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, smart adhesive superhydrophobic surfaces have attracted much attention. However, it is still a challenge to obtain a superhydrophobic surface with shape memory adhesive performance. Herein, inspired by the special back-scrolling/unfolding ability of gecko toe pads and corresponding tunable adhesion, we report such a film produced by sticking a layer of superhydrophobic pillar structured polyurethane (s-PU) onto a shape memory polyurethane-cellulose nanofiber (PU-CNF) substrate to mimic the hair-like skin structure and underlying muscle of the gecko toe pads, respectively. Similar to the muscle of the gecko toe pads, the excellent shape memory effect of the PU-CNF substrate can help the obtained film to memorize and repeatedly display different shapes and solid/water contact models. Thus reversible switching between multiple states from the low-adhesive rolling performance to the high-adhesive pinning performance can be realized. Meanwhile, based on its smart wetting performance, not only the traditional in situ capture/release of one microdroplet, but also the step-by-step release of different droplets can be realized on our film. This work reports a new superhydrophobic shape memory adhesive film, which offers a novel strategy for surface adhesion control and meanwhile opens a new road for applications in controlled droplet manipulation.
Collapse
Affiliation(s)
- Yongzhen Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu Y, Feng J, Gao H, Feng X, Jiang L. Superwettability-Based Interfacial Chemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800718. [PMID: 30592333 DOI: 10.1002/adma.201800718] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/13/2018] [Indexed: 06/09/2023]
Abstract
Superwetting interfaces arising from the cooperation of surface energy and multiscale micro/nanostructures are extensively studied in biological systems. Fundamental understandings gained from biological interfaces boost the control of wettability under different dimensionalities, such as 2D surfaces, 1D fibers and channels, and 3D architectures, thus permitting manipulation of the transport physics of liquids, gases, and ions, which profoundly impacts chemical reactions and material fabrication. In this context, the progress of new chemistry based on superwetting interfaces is highlighted, beginning with mass transport dynamics, including liquid, gas, and ion transport. In the following sections, the impacts of the superwettability-mediated transport dynamics on chemical reactions and material fabrication is discussed. Superwettability science has greatly enhanced the efficiency of chemical reactions, including photocatalytic, bioelectronic, electrochemical, and organic catalytic reactions, by realizing efficient mass transport. For material fabrication, superwetting interfaces are pivotal in the manipulation of the transport and microfluidic dynamics of liquids on solid surfaces, leading to the spatially regulated growth of low-dimensional single-crystalline arrays and high-quality polymer films. Finally, a perspective on future directions is presented.
Collapse
Affiliation(s)
- Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiangang Feng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Hanfei Gao
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Zhan S, Pan Y, Gao ZF, Lou X, Xia F. Biological and chemical sensing applications based on special wettable surfaces. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 2018; 47:8766-8803. [PMID: 30306180 DOI: 10.1039/c8cs00658j] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous materials are ideal carriers for guest molecules and they have been widely used in analytical science. The unique mesoporous structure provides special properties including large specific surface area, tunable pore size, and excellent pore connectivity. The structural properties of mesoporous materials have been largely made use of to improve the performance of analytical methods. For instance, the large specific surface area of mesoporous materials can provide abundant active sites and increase the probability of contact between analytes and active sites to produce stronger signals, thus leading to the improvement of detection sensitivity. The connections between analytical performances and the structural properties of mesoporous materials have not been discussed previously. Understanding the "structure-performance relationship" is highly important for the development of analytical methods with excellent performance based on mesoporous materials. In this review, we discuss the structural properties of mesoporous materials that can be optimized to improve the analytical performance. The discussion is divided into five sections according to the analytical performances: (i) selectivity-related structural properties, (ii) sensitivity-related structural properties, (iii) response time-related structural properties, (iv) stability-related structural properties, and (v) recovery time-related structural properties.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Mi L, Yu J, He F, Jiang L, Wu Y, Yang L, Han X, Li Y, Liu A, Wei W, Zhang Y, Tian Y, Liu S, Jiang L. Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas–Solid–Liquid Interfaces and Controlled Wettability. J Am Chem Soc 2017; 139:10441-10446. [DOI: 10.1021/jacs.7b05249] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Mi
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jiachao Yu
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei He
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ling Jiang
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yafeng Wu
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lijun Yang
- Key
Laboratory of Bioinspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofeng Han
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying Li
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Anran Liu
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ye Tian
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Songqin Liu
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lei Jiang
- Key
Laboratory of Bioinspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Cheng X, Zhang J, Chang H, Luo L, Nie F, Feng X. High performance Cu/Cu2O nanohybrid electrocatalyst for nonenzymatic glucose detection. J Mater Chem B 2016; 4:4652-4656. [DOI: 10.1039/c6tb01158f] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein are Cu/Cu2O nanohybrids preparedviapotential oscillation, and their high performance for nonenzymatic glucose detection applications.
Collapse
Affiliation(s)
- Xiqing Cheng
- Department of Chemistry
- College of Science
- Shanghai University
- Shanghai
- P. R. China
| | - Jun Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Hucheng Chang
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Liqiang Luo
- Department of Chemistry
- College of Science
- Shanghai University
- Shanghai
- P. R. China
| | - Fuqiang Nie
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Xinjian Feng
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- P. R. China
- College of Chemistry
| |
Collapse
|