1
|
ProteinCT: An implementation of the protein circuit topology framework. MethodsX 2022; 9:101861. [PMID: 36187158 PMCID: PMC9520010 DOI: 10.1016/j.mex.2022.101861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022] Open
Abstract
The ability to describe the topology of a folded protein conformation is critically important for functional analysis, protein engineering, and drug design. Circuit topology is a unique topological framework which is widely applicable to protein analysis, yet a state-of-the art implementation of this concept is lacking. Here, we present an open-source Python-implemented circuit topology tool called ProteinCT. The platform provides a method for acquiring, visualizing, analyzing, and quantifying circuit topology data from proteins of interest. We mapped the universe of human proteins to a circuit topology space using conventional hardware within a few hours, demonstrating the performance of ProteinCT. In brief,•A Python-implemented circuit topology tool is developed to extract global and local topological information from a protein structure file.•Modules are developed to combine topological information with geometric and energetic information.•It is demonstrated that the method can be efficiently applied to a large set of proteins, opening a wide range of possibilities for structural proteomics research.
Collapse
|
2
|
Sheikhhassani V, Scalvini B, Ng J, Heling LWHJ, Ayache Y, Evers TMJ, Estébanez‐Perpiñá E, McEwan IJ, Mashaghi A. Topological dynamics of an intrinsically disordered N‐terminal domain of the human androgen receptor. Protein Sci 2022; 31:e4334. [PMID: 35634773 PMCID: PMC9134807 DOI: 10.1002/pro.4334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/28/2022]
Abstract
Human androgen receptor contains a large N‐terminal domain (AR‐NTD) that is highly dynamic and this poses a major challenge for experimental and computational analysis to decipher its conformation. Misfolding of the AR‐NTD is implicated in prostate cancer and Kennedy's disease, yet our knowledge of its structure is limited to primary sequence information of the chain and a few functionally important secondary structure motifs. Here, we employed an innovative combination of molecular dynamics simulations and circuit topology (CT) analysis to identify the tertiary structure of AR‐NTD. We found that the AR‐NTD adopts highly dynamic loopy conformations with two identifiable regions with distinct topological make‐up and dynamics. This consists of a N‐terminal region (NR, residues 1–224) and a C‐terminal region (CR, residues 225–538), which carries a dense core. Topological mapping of the dynamics reveals a traceable time‐scale dependent topological evolution. NR adopts different positioning with respect to the CR and forms a cleft that can partly enclose the hormone‐bound ligand‐binding domain (LBD) of the androgen receptor. Furthermore, our data suggest a model in which dynamic NR and CR compete for binding to the DNA‐binding domain of the receptor, thereby regulating the accessibility of its DNA‐binding site. Our approach allowed for the identification of a previously unknown regulatory binding site within the CR core, revealing the structural mechanisms of action of AR inhibitor EPI‐001, and paving the way for other drug discovery applications.
Collapse
Affiliation(s)
- Vahid Sheikhhassani
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Barbara Scalvini
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Julian Ng
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Laurens W. H. J. Heling
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Yosri Ayache
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Tom M. J. Evers
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Eva Estébanez‐Perpiñá
- Department of Biochemistry and Molecular Biomedicine Institute of Biomedicine (IBUB) of the University of Barcelona (UB) Barcelona Spain
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Scotland UK
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| |
Collapse
|
3
|
Golovnev A, Mashaghi A. Generalized Circuit Topology of Folded Linear Chains. iScience 2020; 23:101492. [PMID: 32896769 PMCID: PMC7481252 DOI: 10.1016/j.isci.2020.101492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 08/18/2020] [Indexed: 11/14/2022] Open
Abstract
A wide range of physical systems can be formally mapped to a linear chain of sorted objects. Upon introduction of intrachain interactions, such a chain can "fold" to elaborate topological structures, analogous to folded linear polymer systems. Two distinct chain-topology theories, knot theory and circuit topology, have separately provided insight into the structure, dynamics, and evolution of folded linear polymers such as proteins and genomic DNA. Knot theory, however, ignores intrachain interactions (contacts), whereas chain crossings are ignored in circuit topology. Thus, there is a need for a universal approach that can provide topological description of any folded linear chain. Here, we generalize circuit topology in order to grasp particularities typically addressed by knot theory. We develop a generic approach that is simple, mathematically rigorous, and practically useful for structural classification, analysis of structural dynamics, and engineering applications.
Collapse
Affiliation(s)
- Anatoly Golovnev
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2333CC Leiden, the Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2333CC Leiden, the Netherlands
| |
Collapse
|
4
|
Scalvini B, Sheikhhassani V, Woodard J, Aupič J, Dame RT, Jerala R, Mashaghi A. Topology of Folded Molecular Chains: From Single Biomolecules to Engineered Origami. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Heidari M, Schiessel H, Mashaghi A. Circuit Topology Analysis of Polymer Folding Reactions. ACS CENTRAL SCIENCE 2020; 6:839-847. [PMID: 32607431 PMCID: PMC7318069 DOI: 10.1021/acscentsci.0c00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 06/03/2023]
Abstract
Circuit topology is emerging as a versatile measure to classify the internal structures of folded linear polymers such as proteins and nucleic acids. The topology framework can be applied to a wide range of problems, most notably molecular folding reactions that are central to biology and molecular engineering. In this Outlook, we discuss the state-of-the art of the technology and elaborate on the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Maziar Heidari
- Leiden
Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden2300 RA, The Netherlands
- Laboratoire
Gulliver, UMR 7083, ESPCI Paris and PSL
University, 75005 Paris, France
| | - Helmut Schiessel
- Institute
Lorentz for Theoretical Physics, Faculty of Science, Leiden University, Leiden 2333 CA, The Netherlands
| | - Alireza Mashaghi
- Leiden
Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden2300 RA, The Netherlands
| |
Collapse
|
6
|
Heidari M, Satarifard V, Mashaghi A. Mapping a single-molecule folding process onto a topological space. Phys Chem Chem Phys 2019; 21:20338-20345. [PMID: 31497825 DOI: 10.1039/c9cp03175h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Physics of protein folding has been dominated by conceptual frameworks including the nucleation-propagation mechanism and the diffusion-collision model, and none address the topological properties of a chain during a folding process. Single-molecule interrogation of folded biomolecules has enabled real-time monitoring of folding processes at an unprecedented resolution. Despite these advances, the topology landscape has not been fully mapped for any chain. Using a novel circuit topology approach, we map the topology landscape of a model polymeric chain. Inspired by single-molecule mechanical interrogation studies, we restrained the ends of a chain and followed fold nucleation dynamics. We find that, before the nucleation, transient local entropic loops dominate. Although the nucleation length of globules is dependent on the cohesive interaction, the ultimate topological states of the collapsed polymer are largely independent of the interaction but depend on the speed of the folding process. After the nucleation, transient topological rearrangements are observed that converge to a steady-state, where the fold grows in a self-similar manner.
Collapse
Affiliation(s)
- Maziar Heidari
- Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Leiden, The Netherlands.
| | | | | |
Collapse
|
7
|
Nikoofard N, Mashaghi A. Implications of Molecular Topology for Nanoscale Mechanical Unfolding. J Phys Chem B 2018; 122:9703-9712. [PMID: 30351148 DOI: 10.1021/acs.jpcb.8b09454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of unfolding pathways via mechanical methods depends on the circuit topology of a folded chain, which categorizes the arrangement of intrachain contacts into parallel, crossing, and series. Three unfolding strategies, namely, threading through a pore, pulling from the ends, and pulling by threading, are compared. Considering that some contacts may be unbreakable within the relevant forces, we also study the dependence of the unfolding efficiency on the chain topology. Our analysis reveals that the number of pathways and the efficiency of unfolding are critically determined by topology in a manner that depends on the employed mechanical approach, a significant result for interpretation of the unfolding experiments.
Collapse
Affiliation(s)
- Narges Nikoofard
- Institute of Nanoscience and Nanotechnology , University of Kashan , Kashan 51167-87317 , Iran
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Science , Leiden University , Leiden 2333 CC , The Netherlands
| |
Collapse
|
8
|
Satarifard V, Heidari M, Mashaghi S, Tans SJ, Ejtehadi MR, Mashaghi A. Topology of polymer chains under nanoscale confinement. NANOSCALE 2017; 9:12170-12177. [PMID: 28805849 DOI: 10.1039/c7nr04220e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of lp under a spherical confinement of radius Rc. At low values of lp/Rc, the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high lp/Rc, the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of lp/Rc, at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross topologies have nearly the same contact orders. Such degeneracy implies that the kinetics and transition rates between the topological states cannot be solely explained by contact order. We expect these findings to be of general importance in understanding chaperone assisted protein folding, chromosome architecture, and the evolution of molecular folds.
Collapse
Affiliation(s)
- Vahid Satarifard
- Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
Heidari M, Satarifard V, Tans SJ, Ejtehadi MR, Mashaghi S, Mashaghi A. Topology of internally constrained polymer chains. Phys Chem Chem Phys 2017; 19:18389-18393. [DOI: 10.1039/c7cp02145c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An interacting partner can provide external control over folding rates and realized topologies.
Collapse
Affiliation(s)
- Maziar Heidari
- Leiden Academic Centre for Drug Research
- Faculty of Mathematics and Natural Sciences
- Leiden University
- Leiden
- The Netherlands
| | - Vahid Satarifard
- Leiden Academic Centre for Drug Research
- Faculty of Mathematics and Natural Sciences
- Leiden University
- Leiden
- The Netherlands
| | | | | | - Samaneh Mashaghi
- School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research
- Faculty of Mathematics and Natural Sciences
- Leiden University
- Leiden
- The Netherlands
| |
Collapse
|
10
|
Ghafari M, Mashaghi A. On the role of topology in regulating transcriptional cascades. Phys Chem Chem Phys 2017; 19:25168-25179. [DOI: 10.1039/c7cp02671d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Topology of interactions in a transcriptional cascade determines the behavior of its signal-response profile and the activation states of genes.
Collapse
Affiliation(s)
- Mahan Ghafari
- Leiden Academic Centre for Drug Research
- Faculty of Mathematics and Natural Sciences
- Leiden University
- Leiden
- The Netherlands
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research
- Faculty of Mathematics and Natural Sciences
- Leiden University
- Leiden
- The Netherlands
| |
Collapse
|