1
|
Facile Synthesis of NiCo 2O 4 Nanowire Arrays/Few-Layered Ti 3C 2-MXene Composite as Binder-Free Electrode for High-Performance Supercapacitors. Molecules 2022; 27:molecules27196452. [PMID: 36234989 PMCID: PMC9572776 DOI: 10.3390/molecules27196452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, a 3D hierarchical structure is constructed by growing NiCo2O4 nanowires on few-layer Ti3C2 nanosheets using Ni foam (NF) as substrate via simple vacuum filtration and solvothermal treatment. Ti3C2 nanosheets are directly anchored on NF surface without binders or surfactants, and NiCo2O4 nanowires composed of about 15 nm nanoparticles uniformly grow on Ti3C2/NF skeleton, which can provide abundant active sites and ion diffusion pathways for enhancing electrochemical performance. Benefiting from the unique structure feature and the synergistic effects of active materials, NiCo2O4/Ti3C2 exhibits a high specific capacitance of 2468 F g-1 at a current density of 0.5 A g-1 and a good rate performance. Based on this, an asymmetric supercapacitor (ASC) based on NiCo2O4/Ti3C2 as positive electrode and activated carbon (AC)/NF as negative electrode is assembled. The ASC achieves a high specific capacitance of 253 F g-1 at 1 A g-1 along with 91.5% retention over 10,000 cycles at 15 A g-1. Furthermore, the ACS presents an outstanding energy density of 90 Wh kg-1 at the power density of 2880 W kg-1. This work provides promising guidance for the fabrication of binder-free, free-standing and hierarchical composites for energy storage application.
Collapse
|
2
|
Han J, Johnson I, Chen M. 3D Continuously Porous Graphene for Energy Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108750. [PMID: 34870863 DOI: 10.1002/adma.202108750] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Constructing bulk graphene materials with well-reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template-based and template-free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo-periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy-related applications, and the remaining challenges that warrant future study.
Collapse
Affiliation(s)
- Jiuhui Han
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-8578, Japan
| | - Isaac Johnson
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
3
|
Qiu HJ, Johnson I, Chen L, Cong W, Ito Y, Liu P, Han J, Fujita T, Hirata A, Chen M. Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. NANOSCALE 2021; 13:10916-10924. [PMID: 34128521 DOI: 10.1039/d1nr02074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing highly active electrocatalysts with low costs and long durability for oxygen evolution reactions (OERs) is crucial towards the practical implementations of electrocatalytic water-splitting and rechargeable metal-air batteries. Anodized nanostructured 3d transition metals and alloys with the formation of OER-active oxides/hydroxides are known to have high catalytic activity towards OERs but suffer from poor electrical conductivity and electrochemical stability in harsh oxidation environments. Here we report that high OER activity can be achieved from the metallic state of Ni which is passivated by atomically thick graphene in a three-dimensional nanoporous architecture. As a free-standing catalytic anode, the non-oxide transition metal catalyst shows a low OER overpotential, high OER current density and long cycling lifetime in alkaline solutions, benefiting from the high electrical conductivity and low impedance resistance for charge transfer and transport. This study may pave a new way to develop high efficiency transition metal OER catalysts for a wide range of applications in renewable energy.
Collapse
Affiliation(s)
- Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Isaac Johnson
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Luyang Chen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weitao Cong
- Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200062, China
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China and WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Jiuhui Han
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takeshi Fujita
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Akihiko Hirata
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. and WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
4
|
Yang W, Liu Y, Li Q, Wei J, Li X, Zhang Y, Liu J. In situ formation of phosphorus-doped porous graphene via laser induction. RSC Adv 2020; 10:23953-23958. [PMID: 35517339 PMCID: PMC9055076 DOI: 10.1039/d0ra03363d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
Heteroatom-doped graphene exhibits high energy storage performance when used as an active electrode, and which can been applied to various advanced applications, but challenging in synthesis, e.g., hazardous chemical reagents usage, difficult processing steps, and energy consumption. We demonstrated a ready, rapid and normal method for generating phosphorus-doped graphene (LIPG) using a CO2 laser on polyimide (PI) substrate mixed with ammonium polyphosphate (APP) in ambient air. LIPG was approved and successfully synthesized via TEM, SEM, XRD and Raman observations. Moreover, we discussed the flame-retardant performance of APP for synthesizing LIPG on PI substrates, increasing the degree of graphitization. Furthermore, LIPG prepared using supercapacitors as an electrode showed good electrochemical performance. Remarkably, the highest specific capacitance of porous LIPG is about 206 F g-1 at the current density of 0.025 A g-1, the value is about 2 times higher than those undoped laser induced graphene (LIG). Such great performance of the LIPG electrode material is attributed to the formation of a hierarchical porous structure, phosphorus atom doping, and manufacturing deficiency. Hence, LIPG showed considerable potential in the electrochemical application field. The proposed preparation of LIPG is best suited for synthesis and applicable to the doping of other heteroatoms doped into graphene.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Ying Liu
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Qiushi Li
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences Beijing 100094 China
| | - Jie Wei
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Xueli Li
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Yi Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Department of Biology and Chemical Engineering, Shandong Vocational College of Science & Technology Weifang 261053 China
| | - Jiping Liu
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
5
|
Mohanty A, Janowska I. Tuning the structure of in-situ synthesized few layer graphene/carbon composites into nanoporous vertically aligned graphene electrodes with high volumetric capacitance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Mendez-Morales T, Burbano M, Haefele M, Rotenberg B, Salanne M. Ion-ion correlations across and between electrified graphene layers. J Chem Phys 2018; 148:193812. [PMID: 30307207 DOI: 10.1063/1.5012761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When an ionic liquid adsorbs onto a porous electrode, its ionic arrangement is deeply modified due to a screening of the Coulombic interactions by the metallic surface and by the confinement imposed upon it by the electrode's morphology. In particular, ions of the same charge can approach at close contact, leading to the formation of a superionic state. The impact of an electrified surface placed between two liquid phases is much less understood. Here we simulate a full supercapacitor made of the 1-butyl-3-methylimidazolium hexafluorophosphate and nanoporous graphene electrodes, with varying distances between the graphene sheets. The electrodes are held at constant potential by allowing the carbon charges to fluctuate. Under strong confinement conditions, we show that ions of the same charge tend to adsorb in front of each other across the graphene plane. These correlations are allowed by the formation of a highly localized image charge on the carbon atoms between the ions. They are suppressed in larger pores, when the liquid adopts a bilayer structure between the graphene sheets. These effects are qualitatively similar to the recent templating effects which have been reported during the growth of nanocrystals on a graphene substrate.
Collapse
Affiliation(s)
- Trinidad Mendez-Morales
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Mario Burbano
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Matthieu Haefele
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Mathieu Salanne
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Kang J, Zhang S, Zhang Z. Three-Dimensional Binder-Free Nanoarchitectures for Advanced Pseudocapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017. [PMID: 28621021 DOI: 10.1002/adma.201700515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ever-increasing energy demands for electrification of transportation and powering of portable electronics are driving the pursuit of energy-storage technologies beyond the current horizon. Pseudocapacitors have emerged as one of the favored contenders to fill in this technology gap, owing to their potential to deliver both high power and energy densities. The high specific capacitance of pseudocapacitive materials is rooted in the various available oxidation states for fast surface or near-surface redox charge transfer. However, the practical implementation of pseudocapacitors is plagued by the insulating nature of most pseudocapacitive materials. The wealth of the research dedicated to addressing these critical issues has grown exponentially in the past decade. Here, we briefly survey the current progress in the development of pseudocapacitive electrodes with a focus on the discussion of the recent most exciting advances in the design of three-dimensional binder-free nanoarchitectures, including porous metal/graphene-based electrodes, as well as metal-atom/ion-doping-enhanced systems, for advanced supercapacitors with comparable energy density to batteries, and high power density.
Collapse
Affiliation(s)
- Jianli Kang
- State Key Laboratory of Separation Membrane and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Shaofei Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Zhijia Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
8
|
Fan Z, Zhu J, Sun X, Cheng Z, Liu Y, Wang Y. High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21763-21772. [PMID: 28605894 DOI: 10.1021/acsami.7b03477] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The volumetric performance is a vitally important metric for portable electronic and wearable devices with limited space. However, it is contradictory for the most supercapacitors in the connection between the volumetric and gravimetric capacitances. Herein, we report a simple strategy to prepare a free-standing and binder-free holey graphene/PPy film that possesses a dense microstructure but still high gravimetric capacitances. The holey graphene/PPy film own high-efficiency ion transport channels and big ion-accessible surface area to achieve high-powered supercapacitor electrodes, which have a superior volumetric capacitance (416 F cm-3) and high gravimetric capacitance (438 F g-1) at 1.0 A g-1 in 6 M KOH electrolyte. Meanwhile, it possesses high rate capability and good cycling performance (82.4% capacitance retention even after 2000 cycles). Furthermore, the volumetric energy density of assembled holey graphene/PPy film symmetric supercapacitor can show high as 22.3 Wh L-1. Such densely packed free-standing holey graphene/PPy film is a very significant electrode material for compact and miniaturized energy storage equipment in the further.
Collapse
Affiliation(s)
- Zhimin Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, P.R. China
| | - Jianpeng Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, P.R. China
- Hongdou Group, Jiangsu General Science Technology Co., Ltd. , Wuxi, Jiangsu 214000, P.R. China
| | - Xinghui Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, P.R. China
| | - Zhongjun Cheng
- Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology , Harbin, Heilongjiang 150090, P.R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, P.R. China
| | - Youshan Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology , Harbin, Heilongjiang 150090, P.R. China
| |
Collapse
|