1
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Khorasani F, Ranjbar-Karimi R, Mohammadiannejad K. Utilizing perhalopyridine-based alkynes as suitable precursors for the synthesis of novel poly(1,2,3-triazolyl)-substituted perhalopyridines. RSC Adv 2024; 14:30873-30885. [PMID: 39346527 PMCID: PMC11427873 DOI: 10.1039/d4ra05861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
A novel series of poly(1,2,3-triazolyl)-substituted perhalopyridines 5a-f were successfully synthesized from the click reaction of the terminal alkynes (drived from the nucleophilic substitution reactions of PFP 1a and PCP 1b with excess amounts of propargyl alcohol) with aryl azides 4a-c under ultrasonic irradiation. Likewise, the sonication of reaction mixtures containing pyridyl cores 3, alkyl bromides 6a,b, and NaN3 under one-pot conditions afforded their respective aliphatic 1,2,3-triazoles 7a-d in yields ranging from 71% to 83%. We next developed an effective method for the regioselective preparation of 2,3,4,5-tetrachloro-6-(prop-2-yn-1-yloxy)pyridine 3c through SNAr reaction of PCP with propargyl alcohol without the utilization of any catalyst. It was then used to fabricate several ((1,2,3-triazol-4-yl)methoxy)-3,4,5,6-tetrachloropyridines 8a-c under the reaction conditions. Finally, the Pd(PPh3)4-catalyzed SMC reaction of tris-triazoles 5b,e with arylboronic acids 9a-c offered a practical method for the synthesis of biaryl-embedded poly(1,2,3-triazoles) 10a-f in good yields.
Collapse
Affiliation(s)
- Fereshteh Khorasani
- Department of Chemistry, Vali-e-Asr University of Rafsanjan Rafsanjan 77176 Islamic Republic of Iran +98-343-131-2429 +98 391 320 2162
| | - Reza Ranjbar-Karimi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan Rafsanjan 77176 Islamic Republic of Iran +98-343-131-2429 +98 391 320 2162
| | - Kazem Mohammadiannejad
- NMR Laboratory, Faculty of Science, Vali-e-Asr University of Rafsanjan Rafsanjan 77176 Islamic Republic of Iran
| |
Collapse
|
3
|
Hai W, Liu Y, Tian Y, Chen Z, Chen Y, Bao W, Bai T, Liu J, Liu Y. In Situ Growth of Columnar PEG on PEDOT and Its Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14738-14747. [PMID: 38957955 DOI: 10.1021/acs.langmuir.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The antifouling properties of conductive polymers have received extensive attention for biosensor and bioelectronic applications. Polyethylene glycol (PEG) is a well-known antifouling material, but the controlled regulation of the surface topography of PEG without a template remains a challenge. Here, we show a columnar structure antifouling conductive polymer brush with enhanced antifouling properties and considerable conductivity. The method involves synthesizing the 3,4-ethylenedioxythiophene monomer modified with azide (EDOT-N3), the electropolymerization of PEDOT-N3, and the in situ growth of PEG polymer brushes on PEDOT through double-click reactions. The resultant columnar structure polymer brush exhibits high electrical conductivity (3.5 Ω·cm2), ultrahigh antifouling property, electrochemical stability (capacitance retention was 93.8% after 2000 cycles of CV scans in serum), and biocompatibility.
Collapse
Affiliation(s)
- Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao 028000, Inner Mongolia, China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - YuJia Tian
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210000, China
| | - Zhiran Chen
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - Yingsong Chen
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tong Liao 028000, Inner Mongolia, China
| | - Wenji Bao
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - Tingfang Bai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| | - Yushuang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
| |
Collapse
|
4
|
Zhang Z, Li Z, Shi Y, Chen Y. Molecular Bottlebrushes as Emerging Nanocarriers: Material Design and Biomedical Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7286-7299. [PMID: 38535519 DOI: 10.1021/acs.langmuir.3c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
As a unique unimolecular nanoobject, molecular bottlebrushes (MBBs) have attracted great interest from researchers in nanocarriers attributed to their defined structure, size, and shape. MBBs with various architectures have been proposed and constructed with well-defined domains for loading "cargos", including core, shell, and periphery functional groups. Compared with nanomaterials based on self-assembly, MBBs have lots of advantages, including facile synthesis, flexible compositions, favorable stability, and tunable size and shape, that make them a promising nanoplatform for various applications. This paper summarizes the recent progress during the past decade, with a focus on developments within the last five years in the synthesis of MBBs with different architectures, and uses them as nanocarriers in drug delivery, biological imaging, and other emerging applications.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheqi Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Shi Y, Hou W, Li Z, Chen Y. Tailoring the Architecture of Molecular Bottlebrushes via Click Grafting-Onto Strategy. Macromol Rapid Commun 2023; 44:e2300362. [PMID: 37625446 DOI: 10.1002/marc.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Molecular bottlebrush (MBB) refer to a synthetic macromolecule, in which a mass of polymeric side chains (SCs) are covalently connected to a macromolecular backbone densely, representing an important type of unimolecular nanomaterial. The chemical composition, size, shape, and surface property of MBB can be precisely tailored by varying the backbones and SCs as well as the grafting density (Gdst ). Meanwhile, the topological structure of backbones and SCs can also significantly affect the chemical and physical properties of MBBs. For the past few years, by combining the structure features of MBB, the polymers with diverse architectures using MBB as building block are synthesized, including linear, branched, and cyclic MBB etc. These promising architectural features will bring MBBs with diverse architectures and lots of applications in advanced materials. For this reason, this work is interested in giving a briefly summary of the recent progress on tailor of well-defined MBBs with diverse architectures using grafting-onto strategy combined with controlled polymerization technique.
Collapse
Affiliation(s)
- Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zheqi Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Bondarian S, Dekamin MG, Valiey E, Naimi-Jamal MR. Supramolecular Cu(ii) nanoparticles supported on a functionalized chitosan containing urea and thiourea bridges as a recoverable nanocatalyst for efficient synthesis of 1 H-tetrazoles. RSC Adv 2023; 13:27088-27105. [PMID: 37701273 PMCID: PMC10493853 DOI: 10.1039/d3ra01989f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
A cost-effective and convenient method for supporting of Cu(ii) nanoparticles on a modified chitosan backbone containing urea and thiourea bridges using thiosemicarbazide (TS), pyromellitic dianhydride (PMDA) and toluene-2,4-diisocyanate (TDI) linkers was designed. The prepared supramolecular (CS-TDI-PMDA-TS-Cu(ii)) nanocomposite was characterized by using Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), thermogravimetry/differential thermogravimetry analysis (TGA/DTA), energy-dispersive X-ray spectroscopy (EDS), EDS elemental mapping and X-ray diffraction (XRD). The obtained supramolecular CS-TDI-PMDA-TS-Cu(ii) nanomaterial was demonstrated to act as a multifunctional nanocatalyst for promoting of multicomponent cascade Knoevenagel condensation/click 1,3-dipolar azide-nitrile cycloaddition reactions very efficiently between aromatic aldehydes, sodium azide and malononitrile under solvent-free conditions and affording the corresponding (E)-2-(1H-tetrazole-5-yl)-3-arylacrylenenitrile derivatives. Low catalyst loading, working under solvent-free conditions and short reaction time as well as easy preparation and recycling, and reuse of the catalyst for five consecutive cycles without considerable decrease in its catalytic efficiency make it a suitable candidate for the catalytic reactions promoted by Cu species.
Collapse
Affiliation(s)
- Shirin Bondarian
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
7
|
Dang HT, Nguyen VD, Haug GC, Arman HD, Larionov OV. Decarboxylative Triazolation Enables Direct Construction of Triazoles from Carboxylic Acids. JACS AU 2023; 3:813-822. [PMID: 37006773 PMCID: PMC10052276 DOI: 10.1021/jacsau.2c00606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/19/2023]
Abstract
Triazoles have major roles in chemistry, medicine, and materials science, as centrally important heterocyclic motifs and bioisosteric replacements for amides, carboxylic acids, and other carbonyl groups, as well as some of the most widely used linkers in click chemistry. Yet, the chemical space and molecular diversity of triazoles remains limited by the accessibility of synthetically challenging organoazides, thereby requiring preinstallation of the azide precursors and restricting triazole applications. We report herein a photocatalytic, tricomponent decarboxylative triazolation reaction that for the first time enables direct conversion of carboxylic acids to triazoles in a single-step, triple catalytic coupling with alkynes and a simple azide reagent. Data-guided inquiry of the accessible chemical space of decarboxylative triazolation indicates that the transformation can improve access to the structural diversity and molecular complexity of triazoles. Experimental studies demonstrate a broad scope of the synthetic method that includes a variety of carboxylic acid, polymer, and peptide substrates. When performed in the absence of alkynes, the reaction can also be used to access organoazides, thereby obviating preactivation and specialized azide reagents and providing a two-pronged approach to C-N bond-forming decarboxylative functional group interconversions.
Collapse
Affiliation(s)
- Hang T. Dang
- Department of Chemistry, The
University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | | | | | - Hadi D. Arman
- Department of Chemistry, The
University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The
University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Mainchain Semifluorinated Polymers with Ultra High Molecular Weight via Reaction-enhanced Reactivity of Intermediate (RERI) Mechanism. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Rodríguez-Ramírez CA, Fascio ML, Agusti R, D’Accorso N, Garcia NL. Eco-friendly and efficient modification of native hemicelluloses via click reactions. NEW J CHEM 2023. [DOI: 10.1039/d2nj04076j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An atom-economic strategy is proposed to valorise the byproducts from an invasive bamboo with improved thermal stability for potential use in composites.
Collapse
Affiliation(s)
- C. A. Rodríguez-Ramírez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Mirta L. Fascio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Rosalía Agusti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Norma D’Accorso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Nancy Lis Garcia
- CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| |
Collapse
|
10
|
Rangel-Núñez C, Molina-Pinilla I, Ramírez-Trujillo C, Suárez-Cruz A, Martínez SB, Bueno-Martínez M. Tackling Antibiotic Resistance: Influence of Aliphatic Branches on Broad-Spectrum Antibacterial Polytriazoles against ESKAPE Group Pathogens. Pharmaceutics 2022; 14:pharmaceutics14112518. [PMID: 36432710 PMCID: PMC9692804 DOI: 10.3390/pharmaceutics14112518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
One of the most important threats to public health is the appearance of multidrug-resistant pathogenic bacteria, since they are the cause of a high number of deaths worldwide. Consequently, the preparation of new effective antibacterial agents that do not generate antimicrobial resistance is urgently required. We report on the synthesis of new linear cationic antibacterial polytriazoles that could be a potential source of new antibacterial compounds. These polymers were prepared by thermal- or copper-catalyzed click reactions of azide and alkyne functions. The antibacterial activity of these materials can be modulated by varying the size or nature of their side chains, as this alters the hydrophilic/hydrophobic balance. Antibacterial activity was tested against pathogens of the ESKAPE group. The P3TD polymer, which has butylated side chains, was found to have the highest bactericidal activity. The toxicity of selected polytriazoles was investigated using human red blood cells and a human gingival fibroblast cell line. The propensity of prepared polytriazoles to induce resistance in certain bacteria was studied. Some of them were found to not produce resistance in methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The interaction of these polytriazoles with the Escherichia coli membrane produces both depolarization and disruption of the membrane.
Collapse
Affiliation(s)
- Cristian Rangel-Núñez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Inmaculada Molina-Pinilla
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Cristina Ramírez-Trujillo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Adrián Suárez-Cruz
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | | | - Manuel Bueno-Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
- Correspondence:
| |
Collapse
|
11
|
All in one: The preparation of polyester/silica hybrid nanocomposites via three different metal-free click reactions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
|
13
|
López S, Ramos M, García-Vargas J, García M, Rodríguez J, Gracia I. Carbon dioxide sorption and melting behaviour of mPEG-alkyne. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Somani M, Mukhopadhyay S, Gupta B. Surface features and patterning in hydrolytic functionalization of polyurethane films. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Li K, Fong D, Meichsner E, Adronov A. A Survey of Strain-Promoted Azide-Alkyne Cycloaddition in Polymer Chemistry. Chemistry 2021; 27:5057-5073. [PMID: 33017499 DOI: 10.1002/chem.202003386] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 02/06/2023]
Abstract
Highly efficient reactions that enable the assembly of molecules into complex structures have driven extensive progress in synthetic chemistry. In particular, reactions that occur under mild conditions and in benign solvents, while producing no by-products and rapidly reach completion are attracting significant attention. Amongst these, the strain-promoted azide-alkyne cycloaddition, involving various cyclooctyne derivatives reacting with azide-bearing molecules, has gained extensive popularity in organic synthesis and bioorthogonal chemistry. This reaction has also recently gained momentum in polymer chemistry, where it has been used to decorate, link, crosslink, and even prepare polymer chains. This survey highlights key achievements in the use of this reaction to produce a variety of polymeric constructs for disparate applications.
Collapse
Affiliation(s)
- Kelvin Li
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Darryl Fong
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
17
|
Lequieu J, Magenau AJD. Reaction-induced phase transitions with block copolymers in solution and bulk. Polym Chem 2021. [DOI: 10.1039/d0py00722f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reaction-induced phase transitions use chemical reactions to drive macromolecular organisation and self-assembly. This review highlights significant and recent advancements in this burgeoning field.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | | |
Collapse
|
18
|
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front 2021. [DOI: 10.1039/d1qo01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intramolecular hydrogen bonding in the α-azido secondary acetamides (α-AzSAs) enabled site-selective integration onto the diazide modular hubs even without steric hindrance.
Collapse
Affiliation(s)
- Koshiro Maegawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Seiji Onishi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
19
|
Kent EW, Lewoczko EM, Zhao B. pH- and chaotropic anion-induced conformational changes of tertiary amine-containing binary heterografted star molecular bottlebrushes in aqueous solution. Polym Chem 2021. [DOI: 10.1039/d0py01466d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three-arm star-shaped, tertiary-amine-containing bottlebrushes exhibit star-globule shape transitions in response to pH changes and addition of sufficiently strong chaotropic anions.
Collapse
Affiliation(s)
- Ethan W. Kent
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | | | - Bin Zhao
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
20
|
Yang Y, Kamon Y, Lynd NA, Hashidzume A. Self-Healing Thermoplastic Elastomers Formed from Triblock Copolymers with Dense 1,2,3-Triazole Blocks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiong Yang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
21
|
Bakirdogen G, Sahkulubey Kahveci EL, Kahveci MU. Fast and efficient preparation of three-arm star block copolymers via tetrazine ligation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Affiliation(s)
- Brian P. Jacobs
- Department of Chemistry, University of Tennessee − Knoxville, Knoxville, Tennessee 37996, United States
| | - Johnathan N. Brantley
- Department of Chemistry, University of Tennessee − Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
23
|
Liu Y, Wang J, Zhang M, Li H, Lin Z. Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS NANO 2020; 14:12491-12521. [PMID: 32975934 DOI: 10.1021/acsnano.0c06936] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The past several decades have witnessed substantial advances in synthesis and self-assembly of inorganic nanocrystals (NCs) due largely to their size- and shape-dependent properties for use in optics, optoelectronics, catalysis, energy conversion and storage, nanotechnology, and biomedical applications. Among various routes to NCs, the nonlinear block copolymer (BCP) nanoreactor technique has recently emerged as a general yet robust strategy for crafting a rich diversity of NCs of interest with precisely controlled dimensions, compositions, architectures, and surface chemistry. It is notable that nonlinear BCPs are unimolecular micelles, where each block copolymer arm of nonlinear BCP is covalently connected to a central core or polymer backbone. As such, their structures are static and stable, representing a class of functional polymers with complex architecture for directing the synthesis of NCs. In this review, recent progress in synthesizing NCs by capitalizing on two sets of nonlinear BCPs as nanoreactors are discussed. They are star-shaped BCPs for producing 0D spherical nanoparticles, including plain, hollow, and core-shell nanoparticles, and bottlebrush-like BCPs for creating 1D plain and core/shell nanorods (and nanowires) as well as nanotubes. As the surface of these NCs is intimately tethered with the outer blocks of nonlinear BCPs used, they can thus be regarded as polymer-ligated NCs (i.e., hairy NCs). First, the rational design and synthesis of nonlinear BCPs via controlled/living radical polymerizations is introduced. Subsequently, their use as the NC-directing nanoreactors to yield monodisperse nanoparticles and nanorods with judiciously engineered dimensions, compositions, and surface chemistry is examined. Afterward, the intriguing properties of such polymer-ligated NCs, which are found to depend sensitively on their sizes, architectures, and functionalities of surface polymer hairs, are highlighted. Some practical applications of these polymer-ligated NCs for energy conversion and storage and drug delivery are then discussed. Finally, challenges and opportunities in this rapidly evolving field are presented.
Collapse
Affiliation(s)
- Yijiang Liu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Jialin Wang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Mingyue Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huaming Li
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Sodium 3-azidopropyldialkoxysilanolate - A versatile route towards new functional 1,2,3–triazole based hyperbranched polyorganoalkoxysiloxanes. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Padilla-Coley S, Xu H, Morsby J, Gao H, Smith BD. Supramolecular Loading of a Broad Spectrum of Molecular Guests In Hyperbranched Polytriazole Nanoparticles with Cores Containing Multiple Functional Groups. Biomacromolecules 2020; 21:2165-2175. [PMID: 32227988 DOI: 10.1021/acs.biomac.0c00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study evaluated the supramolecular properties of a new family of water-soluble hyperbranched polytriazoles that have a unimolecular micelle structure. Two new, structurally related hyperbranched polymers (HBPa and HBPn), with the same size (Dh = 11 nm) and core-shell architecture, were prepared and found to act as nanoscale hosts for a broad spectrum of molecular guests. The globular-shaped hyperbranched polymers were synthesized by a straightforward one-pot polymerization method that permits easy synthetic control of the multiple functional groups within the core. Surrounding the core is a shell of polyethylene glycol chains that promotes solubility in pH 7.4 buffer solution and inhibits self-aggregation of the nanoparticles. The core of HBPa, containing a mixture of anionic carboxylate groups and 1,2,3-triazole rings, could be loaded with cationic hydrophilic (i.e., propidium iodide) or partially hydrophobic (i.e., Hoechst 33342) dyes or drugs, including a binary dye/drug pair (i.e., indocyanine green/mitoxantrone). The core of HBPn, containing a mixture of uncharged 2-pentanone chains and 1,2,3-triazole rings, could be loaded with uncharged and very hydrophobic dyes (i.e., Nile Red) or drugs. Improved aqueous solubility of camptothecin was achieved 10-fold from 8.4 to 75 ng/mL. Additionally, cell toxicity studies showed that HBPn was able to release the camptothecin drug inside A549 cancer cells resulting in increased cell death. Taken together, the results suggest that this new family of water-soluble hyperbranched polytriazoles could be broadly useful as nanocarriers for various applications in therapy, imaging, or a combination of the two (theranostics).
Collapse
Affiliation(s)
- Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Hui Xu
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Janeala Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
26
|
A decade of advances in the reaction of nitrogen sources and alkynes for the synthesis of triazoles. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213217] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Chae SK, Cho K, Lee SM, Kim HJ, Ko YJ, Son SU. AB2 polymerization on hollow microporous organic polymers: engineering of solid acid catalysts for the synthesis of soluble cellulose derivatives. Polym Chem 2020. [DOI: 10.1039/c9py01615e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New post-synthetic functionalization of hollow microporous organic polymers was developed based on AB2 polymerization and thiol–yne click reaction.
Collapse
Affiliation(s)
- Su Kyung Chae
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Kyoungil Cho
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute
- Daejeon 34133
- Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance
- National Center of Inter-University Research Facilities (NCIRF)
- Seoul National University
- Seoul 08826
- Korea
| | - Seung Uk Son
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| |
Collapse
|
28
|
Howe DH, Jenewein KJ, Hart JL, Taheri ML, Magenau AJD. Functionalization-induced self-assembly under ambient conditions via thiol-epoxide “click” chemistry. Polym Chem 2020. [DOI: 10.1039/c9py01144g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymer micelles were formed using thiol-epoxide “click” chemistry to trigger functionalization-induced self-assembly (FISA) of block copolymers by modifying a reactive glycidyl methacrylate block with solvophobes.
Collapse
Affiliation(s)
- David H. Howe
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Ken J. Jenewein
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - James L. Hart
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Mitra L. Taheri
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Andrew J. D. Magenau
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| |
Collapse
|
29
|
Structure-property relationships of d-mannitol-based cationic poly(amide triazoles) and their self-assembling complexes with DNA. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Yan W, Wang J, Ding J, Sun P, Zhang S, Shen J, Jin X. Catalytic epoxidation of olefins in liquid phase over manganese based magnetic nanoparticles. Dalton Trans 2019; 48:16827-16843. [PMID: 31646315 DOI: 10.1039/c9dt03456k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epoxidation of olefins stands out as a crucial class of reactions and is of great interest in academic research and industry due to the production of various important fine chemicals and intermediates. Manganese complexes have the potential to catalyze the epoxidation of olefins with high efficiency. Magnetic nanocatalysts have attracted significant attention for immobilizing homogeneous transition metal complexes. Easy separation by external magnetic fields, nontoxicity, and a core shell structure are the main advantages of magnetic nanocatalysts over other heterogeneous catalysts. The method of functionalizing magnetic nanoparticles and of anchoring homogeneous metal complexes has significant effects on catalytic performance. Therefore, a critical review of recent research progress on manganese complexes' immobilization on magnetic nanoparticles for liquid phase olefin epoxidation is necessary. In this work, magnetic nanoparticles are categorized according to their preparation procedures and structures. The physical/chemical properties, catalytic performance for olefin epoxidation, reusability and plausible reaction mechanisms will be discussed, in an attempt to unravel the structure-function relationship and to guide the future study of MNPs' design for olefin epoxidations.
Collapse
Affiliation(s)
- Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jie Ding
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Puhua Sun
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Shuxia Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| |
Collapse
|
31
|
Ivanov IV, Meleshko TK, Kashina AV, Yakimansky AV. Amphiphilic multicomponent molecular brushes. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4870] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multicomponent molecular brushes containing amphiphilic polymer moieties are promising objects of research of macromolecular chemistry. The development of stimulus-responsive systems sensitive to changes in environmental parameters, based on the molecular brushes, opens up new possibilities for their applications in medicine, biochemistry and microelectronics. The review presents the current understanding of the structures of main types of amphiphilic multicomponent brushes, depending on the chemical nature and type of coupling of the backbone and side chains. The approaches to the controlled synthesis of multicomponent molecular brushes of different architecture are analyzed. Self-assembly processes of multicomponent molecular brushes in selective solvents are considered.
The bibliography includes 259 references.
Collapse
|
32
|
Naguib H, Cao X, Gao H. Synthesize Hyperbranched Polymers Carrying Two Reactive Handles via CuAAC Reaction and Thiol–Ene Chemistry. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hannah Naguib
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame IN 46556‐5670 USA
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame IN 46556‐5670 USA
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Haifeng Gao
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame IN 46556‐5670 USA
| |
Collapse
|
33
|
Chen Y, Cheng T, Qin A, Tang BZ. Alkyne–Azide Click Polymerization Catalyzed by Magnetically Recyclable Fe
3
O
4
/SiO
2
/Cu
2
O Nanoparticles. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yizhao Chen
- State Key Laboratory of Luminescent Materials and DevicesCenter for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Tianyu Cheng
- State Key Laboratory of Luminescent Materials and DevicesCenter for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and DevicesCenter for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and DevicesCenter for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou 510640 China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science & Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
34
|
Gan W, Cao X, Shi Y, Gao H. Chain‐growth polymerization of azide–alkyne difunctional monomer: Synthesis of star polymer with linear polytriazole arms from a core. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Weiping Gan
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana 46556
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana 46556
| | - Yi Shi
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana 46556
| | - Haifeng Gao
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana 46556
| |
Collapse
|
35
|
Carrero MJ, Ramos MJ, Rodríguez JF, Borreguero AM. Ethylene oxide based copolymers functionalized with terminal alkynes: Structure influence on their micelle formation. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Chen X, Hu R, Qi C, Fu X, Wang J, He B, Huang D, Qin A, Tang BZ. Ethynylsulfone-Based Spontaneous Amino-yne Click Polymerization: A Facile Tool toward Regio- and Stereoregular Dynamic Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00670] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuemei Chen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Chunxuan Qi
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Die Huang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
37
|
Huang D, Liu Y, Qin A, Tang BZ. Structure–Property Relationship of Regioregular Polytriazoles Produced by Ligand-Controlled Regiodivergent Ru(II)-Catalyzed Azide–Alkyne Click Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Die Huang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Yong Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Huang D, Liu Y, Guo S, Li B, Wang J, Yao B, Qin A, Tang BZ. Transition metal-free thiol–yne click polymerization toward Z-stereoregular poly(vinylene sulfide)s. Polym Chem 2019. [DOI: 10.1039/c9py00161a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient K3PO4-mediated thiol–yne click polymerization was established, and regio- and stereoregular poly(vinylene sulfide)s with Z-isomers were produced.
Collapse
Affiliation(s)
- Die Huang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Yong Liu
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Shang Guo
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Baixue Li
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Bicheng Yao
- Department of Chemistry
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction
- Institute for Advanced Study
- and Department of Chemical and Biological Engineering
- The Hong Kong University of Science & Technology
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
39
|
Howe DH, Hart JL, McDaniel RM, Taheri ML, Magenau AJD. Functionalization-Induced Self-Assembly of Block Copolymers for Nanoparticle Synthesis. ACS Macro Lett 2018; 7:1503-1508. [PMID: 35651226 DOI: 10.1021/acsmacrolett.8b00815] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanoparticle synthesis was demonstrated via functionalization-induced self-assembly (FISA) of block copolymers using Suzuki-Miyaura cross-coupling. In situ self-assembly was triggered in organic media by the progressive installation of solvophobic pendant groups onto an initially soluble diblock copolymer, rendering the reactive block insoluble and causing the formation of spherical polymeric micelles. Self-assembly was found to depend on the percent functionalization (f%), where after a critical threshold micelles were accessible that increased in size with increasing f% values. We found the chemical nature of the installed functional group to be crucial for conducting FISA and for controlling the solution morphology, with relatively solvophilic adducts remaining as unimers and increasingly solvophobic adducts trending toward larger micelles, from ca. 40 to 100 nm in diameter. The core and corona of the anticipated micellar structure were visualized using fluorine mapping through electron energy loss spectroscopy, in conjunction with FISA achieved through pendent trifluorophenyl functionality. This work establishes FISA as a new, versatile synthetic strategy to create nanoparticles having tunable morphologies with potential application as molecular payload delivery vehicles.
Collapse
Affiliation(s)
- David H. Howe
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - James L. Hart
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Riki M. McDaniel
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Mitra L. Taheri
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Andrew J. D. Magenau
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
40
|
K S, G U, CP RN. Azide telechelics chain extended by click reaction: Synthesis, characterization, and cross-linking. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sunitha K
- Polymers and Special Chemicals Division; Vikram Sarabhai Space Centre; Thiruvananthapuram India
| | - Unnikrishnan G
- Department of Chemistry; National Institute of Technology; Calicut India
| | - Reghunadhan Nair CP
- Department of Polymer Science and Rubber Technology; Cochin University of Science and Technology; Cochin India
| |
Collapse
|
41
|
Zhao Y. Facile Synthesis and Topological Transformation of Multicomponent Miktoarm Star Copolymers. Macromol Rapid Commun 2018; 40:e1800571. [DOI: 10.1002/marc.201800571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision SynthesisJiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationState and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
42
|
Alameddine B, Baig N, Shetty S, Al-Mousawi S, Al-Sagheer F. Triptycene-containing Poly(vinylene sulfone) derivatives from a metal-free thiol-yne click polymerization followed by a mild oxidation reaction. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Neary WJ, Fultz BA, Kennemur JG. Well-Defined and Precision-Grafted Bottlebrush Polypentenamers from Variable Temperature ROMP and ATRP. ACS Macro Lett 2018; 7:1080-1086. [PMID: 35632939 DOI: 10.1021/acsmacrolett.8b00576] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polypentenamer macroinitiators are synthesized through variable temperature ring opening metathesis polymerization of 3-cyclopentenyl α-bromoisobutyrate, which has sufficient ring strain (ΔHp = -22.6 kJ mol-1) to produce targeted molar mass (<5% from theoretical), low dispersity (1.17 ≤ Đ ≤ 1.23), and high conversion (∼72%). An initiation site for atom-transfer radical polymerization at every fifth backbone carbon allows "grafting-from" of styrene with quantitative initiation and linear molar mass increase with time. These bottlebrushes retain a low dispersity (Đ ≤ 1.34) at varying graft degrees of polymerization (5 ≤ Nsc ≤ 49) and have a glass transition temperature highly sensitized to graft length. Extension of the grafts with methyl methacrylate produces a core-shell brush polymer with high molar mass (>1000 kg mol-1) and Đ = 1.33. This system exhibits high synthetic versatility and control with a unique flexible backbone to expand the suite of densely grafted polymers.
Collapse
Affiliation(s)
- William J. Neary
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Brandon A. Fultz
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
44
|
Payne ME, Grayson SM. Characterization of Synthetic Polymers via Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) Mass Spectrometry. J Vis Exp 2018. [PMID: 29939185 PMCID: PMC6101691 DOI: 10.3791/57174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
There are many techniques that can be employed in the characterization of synthetic homopolymers, but few provide as useful of information for end group analysis as matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). This tutorial demonstrates methods for optimization of the sample preparation, spectral acquisition, and data analysis of synthetic polymers using MALDI-TOF MS. Critical parameters during sample preparation include the selection of the matrix, identification of an appropriate cationization salt, and tuning the relative proportions of the matrix, cation, and analyte. The acquisition parameters, such as mode (linear or reflector), polarization (positive or negative), acceleration voltage, and delay time, are also important. Given some knowledge of the chemistry involved to synthesize the polymer and optimizing both the data acquisition parameters and the sample preparation conditions, spectra should be obtained with sufficient resolution and mass accuracy to enable the unambiguous determination of the end groups of most homopolymers (masses below 10,000) in addition to the repeat unit mass and the overall molecular weight distribution. Though demonstrated on a limited set of polymers, these general techniques are applicable to a much wider range of synthetic polymers for determining mass distributions, though end group determination is only possible for homopolymers with narrow dispersity.
Collapse
|
45
|
Kolle S, Batra S. Transformations of alkynes to carboxylic acids and their derivatives via C[triple bond, length as m-dash]C bond cleavage. Org Biomol Chem 2018; 14:11048-11060. [PMID: 27805215 DOI: 10.1039/c6ob01912a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alkynes are building blocks of high synthetic value and their usefulness as precursors to many chemical and biological systems is widely established. Amongst several transformations of alkynes, cleavage of the C[triple bond, length as m-dash]C bond for obtaining diverse compounds is considered to be important. This review, in particular, comprehensively assimilates the transformations of alkynes to carboxylic acids including esters, amides and nitriles resulting from the cleavage of the C[triple bond, length as m-dash]C bond either under the influence of a metal catalyst or via a metal-free approach.
Collapse
Affiliation(s)
- Shivalinga Kolle
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India. and Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
46
|
Abstract
The recent progress in alkyne-based click polymerizations and their application in the preparation of new functional polymers are summarized. The challenges and opportunities in this area are also briefly discussed.
Collapse
Affiliation(s)
- Die Huang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Yong Liu
- Department of Chemistry
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction
- The Hong Kong University of Science & Technology
- Kowloon
- China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
47
|
Hu X, Li G, Lin Y. A novel high-capacity immunoadsorbent with PAMAM dendritic spacer arms by click chemistry. NEW J CHEM 2018. [DOI: 10.1039/c8nj02142b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel immunoadsorbent with polyamidoamine dendritic spacer arms was prepared. Click chemistry can improve the reaction selectivity between the ligands and the support matrix under mild reaction conditions. The designed and prepared immunoadsorbent exhibits excellent adsorption for IgG. The IgG adsorption capacity of Sep-G3-His is superior to those of Sep-triazole-His and protein A immunoadsorbents.
Collapse
Affiliation(s)
- Xiaoyan Hu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Guangji Li
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Yinlei Lin
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| |
Collapse
|
48
|
Sunitha K, Bhuvaneswari S, Mathew D, Unnikrishnan G, Nair CPR. Comb Polymer Network of Polydimethylsiloxane with a Novolac Stem: Synthesis via Click Coupling and Surface Morphology Architecturing by Solvents. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - G. Unnikrishnan
- Department
of Chemistry, National Institute of Technology, Calicut 673601, India
| | - C. P. Reghunadhan Nair
- Department
of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin 682022, India
| |
Collapse
|
49
|
Howe DH, McDaniel RM, Magenau AJD. From Click Chemistry to Cross-Coupling: Designer Polymers from One Efficient Reaction. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- David H. Howe
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Riki M. McDaniel
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Andrew J. D. Magenau
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Huo J, Hu Z, Chen D, Luo S, Wang Z, Gao Y, Zhang M, Chen H. Preparation and Characterization of Poly-1,2,3-triazole with Chiral 2(5 H)-Furanone Moiety as Potential Optical Brightening Agents. ACS OMEGA 2017; 2:5557-5564. [PMID: 31457821 PMCID: PMC6644745 DOI: 10.1021/acsomega.7b00196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/25/2017] [Indexed: 05/26/2023]
Abstract
A series of novel heterocyclic polymers with fluorescent brightening properties are synthesized via Click polymerization. Fast synthesis of poly-1,2,3-triazoles (M n ≥ 9.31 kDa) is described herein, with a high yield of up to 95%. The Click polymerization approach has a number of advantages, including facile operation and outstanding isolation yield. The resultant polymers have a high thermal stability, excellent UV resistance, as well as acid and light fastness. On embedding with optical brightening agents, the polymers display strong fluorescent brightening properties in the tetrahydrofuran solution. Moreover, these products have a strong solution emission intensity and extraordinary photostability under UV light.
Collapse
Affiliation(s)
- Jingpei Huo
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R.
China
| | - Zhudong Hu
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Dongchu Chen
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Shihe Luo
- School
of Chemistry and Environment, South China
Normal University, Guangzhou 510006, P. R. China
| | - Zhaoyang Wang
- School
of Chemistry and Environment, South China
Normal University, Guangzhou 510006, P. R. China
| | - Yonghui Gao
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Min Zhang
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| | - Hong Chen
- College
of Materials Science and Energy Engineering, Foshan University, Foshan 528000, P. R. China
| |
Collapse
|