1
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
2
|
Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coord Chem Rev 2022; 458:214417. [PMID: 35153301 PMCID: PMC8816526 DOI: 10.1016/j.ccr.2022.214417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Despite the extensive and rapid discovery of modern drugs for treatment of cancer, microbial infections, and viral illnesses; these diseases are still among major global health concerns. To take inspiration from natural nucleases and also the therapeutic potential of metallopeptide antibiotics such as the bleomycin family, artificial metallonucleases with the ability of promoting DNA/RNA cleavage and eventually affecting cellular biological processes can be introduced as a new class of therapeutic candidates. Metal complexes can be considered as one of the main categories of artificial metalloscissors, which can prompt nucleic acid strand scission. Accordingly, biologists, inorganic chemists, and medicinal inorganic chemists worldwide have been designing, synthesizing and evaluating the biological properties of metal complexes as artificial metalloscissors. In this review, we try to highlight the recent studies conducted on the nuclease-like metalloscissors and their potential therapeutic applications. Under the light of the concurrent Covid-19 pandemic, the human need for new therapeutics was highlighted much more than ever before. The nuclease-like metalloscissors with the potential of RNA cleavage of invading viral pathogens hence deserve prime attention.
Collapse
|
3
|
Ligand-RNA interaction assay based on size-selective fluorescence core-shell nanocomposite. Anal Bioanal Chem 2020; 412:7349-7356. [DOI: 10.1007/s00216-020-02869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
4
|
Szyrwiel Ł, Shimura M, Setner B, Szewczuk Z, Malec K, Malinka W, Brasun J, Pap JS. SOD-Like Activity of Copper(II) Containing Metallopeptides Branched By 2,3-Diaminopropionic Acid: What the N-Termini Elevate, the C-Terminus Ruins. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9717-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
6
|
Dai Y, Peralta AN, Wynn JE, Sherpa C, Li H, Verma A, Le Grice SFJ, Santos WL. Molecular recognition of a branched peptide with HIV-1 Rev Response Element (RRE) RNA. Bioorg Med Chem 2019; 27:1759-1765. [PMID: 30879859 PMCID: PMC6476629 DOI: 10.1016/j.bmc.2019.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/27/2023]
Abstract
Interaction of HIV-1 rev response element (RRE) RNA with its cognate protein, Rev, is critical for HIV-1 replication. Understanding the mode of interaction between RRE RNA and ligands at the binding site can facilitate RNA molecular recognition as well as provide a strategy for developing anti-HIV therapeutics. Our approach utilizes branched peptides as a scaffold for multivalent binding to RRE IIB (high affinity rev binding site) with incorporation of unnatural amino acids to increase affinity via non-canonical interactions with the RNA. Previous high throughput screening of a 46,656-member library revealed several hits that bound RRE IIB RNA in the sub-micromolar range. In particular, the lead compound, 4B3, displayed a Kd value of 410 nM and demonstrated selectivity towards RRE. A ribonuclease protection assay revealed that 4B3 binds to the stem-loop structure of RRE IIB RNA, which was confirmed by SHAPE analysis with 234 nt long NL4-3 RRE RNA. Our studies further indicated interaction of 4B3 with both primary and secondary Rev binding sites.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ashley N Peralta
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Chringma Sherpa
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, United States
| | - Hao Li
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Astha Verma
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
7
|
Zhou M, Shmidov Y, Matson JB, Bitton R. Multi-scale characterization of thermoresponsive dendritic elastin-like peptides. Colloids Surf B Biointerfaces 2017; 153:141-151. [PMID: 28236790 DOI: 10.1016/j.colsurfb.2017.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/18/2017] [Accepted: 02/12/2017] [Indexed: 12/01/2022]
Abstract
Elastin like peptides (ELPs)-polypeptides based on the protein elastin-are used widely as thermoresponsive components in biomaterials due to the presence of a sharp soluble-to-insoluble phase change at a characteristic transition temperature (Tt). While linear ELPs have been thoroughly studied, few investigations into branched ELPs have been carried out. Using lysine amino acids as branching and terminal units with 1-3 pentameric repeats between each branch, ELP dendrimers were prepared by solid-phase peptide synthesis with molecular weights as high as 14kDa. A conformation change from random coil to β-turn upon heating through the Tt, typical of ELPs, was observed by circular dichroism spectroscopy for all peptides. The high molecular weights of these peptides enabled the use of characterization techniques typically reserved for polymers. Variable-temperature small-angle X-ray scattering measurements in dilute solution revealed an increase in size and fractal dimension upon heating, even well below the Tt. These results were corroborated by cryogenic transmission electron microscopy, which confirmed the presence of aggregates below the Tt, and micro differential scanning calorimetry, which showed a broad endothermic peak below the Tt. These results collectively indicate the presence of a pre-coacervation step in the phase transition of ELP dendrimers.
Collapse
Affiliation(s)
- Mingjun Zhou
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
8
|
Shimura M, Szyrwiel L, Matsuyama S, Yamauchi K. Visualization of Intracellular Elements Using Scanning X-Ray Fluorescence Microscopy. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Barros SA, Yoon I, Suh SE, Chenoweth DM. Bridgehead-Substituted Triptycenes for Discovery of Nucleic Acid Junction Binders. Org Lett 2016; 18:2423-6. [PMID: 27172288 DOI: 10.1021/acs.orglett.6b00945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, the utility of triptycene as a scaffold for targeting nucleic acid three-way junctions was demonstrated. A rapid, efficient route for the synthesis of bridgehead-substituted triptycenes is reported, in addition to solid-phase diversification to a new class of triptycene peptides. The triptycene peptides were evaluated for binding to a d(CAG)·(CTG) repeat DNA junction exhibiting potent affinities. The bridgehead-substituted triptycenes provide new building blocks for rapid access to diverse triptycene ligands with novel architectures.
Collapse
Affiliation(s)
- Stephanie A Barros
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ina Yoon
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Sung-Eun Suh
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Frecentese F, Sosic A, Saccone I, Gamba E, Link K, Miola A, Cappellini M, Cattelan MG, Severino B, Fiorino F, Magli E, Corvino A, Perissutti E, Fabris D, Gatto B, Caliendo G, Santagada V. Synthesis and in Vitro Screening of New Series of 2,6-Dipeptidyl-anthraquinones: Influence of Side Chain Length on HIV-1 Nucleocapsid Inhibitors. J Med Chem 2016; 59:1914-24. [PMID: 26797100 DOI: 10.1021/acs.jmedchem.5b01494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,6-Dipeptidyl-anthraquinones are a promising class of nucleic acid-binding compounds that act as NC inhibitors in vitro. We designed, synthesized, and tested new series of 2,6-disubstituted-anthraquinones, which are able to bind viral nucleic acid substrates of NC. We demonstrate here that these novel derivatives interact preferentially with noncanonical structures of TAR and cTAR, stabilize their dynamics, and interfere with NC chaperone activity.
Collapse
Affiliation(s)
- Francesco Frecentese
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| | - Alice Sosic
- Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | - Irene Saccone
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| | - Elia Gamba
- Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | - Kristina Link
- Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | - Angelica Miola
- Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | - Marta Cappellini
- Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | | | - Beatrice Severino
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| | - Ferdinando Fiorino
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| | - Elisa Magli
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| | - Angela Corvino
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| | - Elisa Perissutti
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| | - Dan Fabris
- The RNA Institute and Department of Chemistry, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Barbara Gatto
- Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università di Napoli "Federico II" Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
11
|
Wuttke A, Fischer SN, Nebel A, Marsch M, Geyer A. Improved δ-valerolactam templates for the assembly of Aβ-miniamyloids by boronic ester formation. Org Biomol Chem 2016; 14:5032-48. [DOI: 10.1039/c6ob00565a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Numerically defined oligomers of amyloidogenic peptides were obtained by boronic ester formation with synthetic polyol templates.
Collapse
Affiliation(s)
- André Wuttke
- Institute of Chemistry
- Philipps-University Marburg
- 35032 Marburg
- Germany
| | | | - Annika Nebel
- Institute of Chemistry
- Philipps-University Marburg
- 35032 Marburg
- Germany
| | - Michael Marsch
- Institute of Chemistry
- Philipps-University Marburg
- 35032 Marburg
- Germany
| | - Armin Geyer
- Institute of Chemistry
- Philipps-University Marburg
- 35032 Marburg
- Germany
| |
Collapse
|
12
|
Szyrwiel Ł, Pap JS, Szczukowski Ł, Kerner Z, Brasuń J, Setner B, Szewczuk Z, Malinka W. Branched peptide with three histidines for the promotion of CuII binding in a wide pH range – complementary potentiometric, spectroscopic and electrochemical studies. RSC Adv 2015. [DOI: 10.1039/c5ra08602g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Triple-arm, His-rich branched peptide stabilizes 1 : 1 CuII complex forms by switching between N- and C-terminal His coordination upon changes in pH.
Collapse
Affiliation(s)
| | - József S. Pap
- MTA Centre for Energy Research
- Surface Chemistry and Catalysis Department
- H-1525 Budapest
- Hungary
| | - Łukasz Szczukowski
- Department of Chemistry of Drugs
- Wrocław Medical University
- 50-552 Wrocław
- Poland
| | - Zsolt Kerner
- MTA Centre for Energy Research
- Surface Chemistry and Catalysis Department
- H-1525 Budapest
- Hungary
| | - Justyna Brasuń
- Department of Inorganic Chemistry
- Wroclaw Medical University
- 50-552 Wroclaw
- Poland
| | - Bartosz Setner
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Wiesław Malinka
- Department of Chemistry of Drugs
- Wrocław Medical University
- 50-552 Wrocław
- Poland
| |
Collapse
|