1
|
Yamamoto K, Sato T, Hao A, Asao K, Kaguchi R, Kusaka S, Ruddarraju RR, Kazamori D, Seo K, Takahashi S, Horiuchi M, Yokota SI, Lee SY, Ichikawa S. Development of a natural product optimization strategy for inhibitors against MraY, a promising antibacterial target. Nat Commun 2024; 15:5085. [PMID: 38877016 PMCID: PMC11178787 DOI: 10.1038/s41467-024-49484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
MraY (phospho-N-acetylmuramoyl-pentapeptide-transferase) inhibitory natural products are attractive molecules as candidates for a new class of antibacterial agents to combat antimicrobial-resistant bacteria. Structural optimization of these natural products is required to improve their drug-like properties for therapeutic use. However, chemical modifications of these natural products are painstaking tasks due to complex synthetic processes, which is a bottleneck in advancing natural products to the clinic. Here, we develop a strategy for a comprehensive in situ evaluation of the build-up library, which enables us to streamline the preparation of the analogue library and directly assess its biological activities. We apply this approach to a series of MraY inhibitory natural products. Through construction and evaluation of the 686-compound library, we identify promising analogues that exhibit potent and broad-spectrum antibacterial activity against highly drug-resistant strains in vitro as well as in vivo in an acute thigh infection model. Structures of the MraY-analogue complexes reveal distinct interaction patterns, suggesting that these analogues represent MraY inhibitors with unique binding modes. We further demonstrate the generality of our strategy by applying it to tubulin-binding natural products to modulate their tubulin polymerization activities.
Collapse
Grants
- 22K20704 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H03622 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP19K16648 MEXT | Japan Society for the Promotion of Science (JSPS)
- 19H03345 MEXT | Japan Society for the Promotion of Science (JSPS)
- 18H04599 MEXT | Japan Society for the Promotion of Science (JSPS)
- 20H04757 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP19ak0101118h0001 Japan Agency for Medical Research and Development (AMED)
- 21ak0101118h9903 Japan Agency for Medical Research and Development (AMED)
- JP18am0101093j0002 Japan Agency for Medical Research and Development (AMED)
- JP22ama121039 Japan Agency for Medical Research and Development (AMED)
- JP23gm1610012 Japan Agency for Medical Research and Development (AMED)
- JP23gm1610013 Japan Agency for Medical Research and Development (AMED)
- JST START Program: ST211004JO Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) from the Ministry of Education, Culture, Sport, Science, and Technology in Japan, MEXT for the Joint Research Program of the Research Center for Zoonosis Control, Hokkaido University
- the Duke Science Technology Scholar Fund
- Takeda Foundation, The Tokyo Biomedical Research Foundation and was partly supported by Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), funded by MEXT under "Support Program for Implementation of New Equipment Sharing System"
Collapse
Affiliation(s)
- Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Aili Hao
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kenta Asao
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Shintaro Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | | | - Daichi Kazamori
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624, Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Kiki Seo
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624, Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Satoshi Takahashi
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Minami-1, Nishi-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Minami-1, Nishi-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami-1, Nishi-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Sapporo, Japan.
| |
Collapse
|
2
|
Pandey P, Chatterjee S, Berida T, Doerksen RJ, Roy S. Identification of potential non-nucleoside MraY inhibitors for tuberculosis chemotherapy using structure-based virtual screening. J Biomol Struct Dyn 2022; 40:4832-4849. [PMID: 33353500 PMCID: PMC9948644 DOI: 10.1080/07391102.2020.1862705] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 02/02/2023]
Abstract
The efforts to limit the spread of the tuberculosis epidemic have been challenged by the rise of drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. It is critical to discover new chemical scaffolds acting on novel or unexploited targets to beat this drug-resistant pathogen. MraY (phospho-MurNAc-pentapeptide translocase or translocase I) is an in vivo validated target for antibacterials-discovery. MraY is inhibited by nucleoside-based natural products that suffer from poor in vivo efficacy. The current study is focused on discovering novel chemical entities, particularly, non-nucleoside small molecules, as MraYMtb inhibitors possessing antituberculosis activity. In the absence of any reported X-ray crystal structures of MraYMtb, we used a homology model-based virtual screening approach combined with the ligand-based e-pharmacophore screening. We screened ∼12 million commercially available compounds from the ZINC15 database using GOLD software. The resulting hits were filtered using a 2-pronged screening method comprising e-pharmacophore hypotheses and docking against the MraYMtb homology model using Glide. Further clustering based on Glide scores and optimal binding interactions resulted in 15 in silico hits. We performed molecular dynamics (MD) simulations for the three best-ranking compounds and one other poorer-ranking compound, out of the 15 in silico hits, to analyze the interaction modes in detail. The MD simulations indicated stable interactions between the compounds and key residues in the MraY active site that are crucial for maintaining the enzymatic activity. These in silico hits could advance the antibacterial drug discovery campaign to find new MraY inhibitors for tuberculosis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Shamba Chatterjee
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
| | - Tomayo Berida
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
| | - Robert J. Doerksen
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
3
|
A Sub-Micromolar MraY AA Inhibitor with an Aminoribosyl Uridine Structure and a ( S, S)-Tartaric Diamide: Synthesis, Biological Evaluation and Molecular Modeling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061769. [PMID: 35335131 PMCID: PMC8954382 DOI: 10.3390/molecules27061769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/28/2023]
Abstract
New inhibitors of the bacterial tranferase MraY are described. Their structure is based on an aminoribosyl uridine scaffold, which is known to be important for the biological activity of natural MraY inhibitors. A decyl alkyl chain was introduced onto this scaffold through various linkers. The synthesized compounds were tested against the MraYAA transferase activity, and the most active compound with an original (S,S)-tartaric diamide linker inhibits MraY activity with an IC50 equal to 0.37 µM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative strains; however, the compounds showed no antibacterial activity. Docking and molecular dynamics studies revealed that this new linker established two stabilizing key interactions with N190 and H325, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin.
Collapse
|
4
|
Chen ME, Chen XW, Hu YH, Ye R, Lv JW, Li B, Zhang FM. Recent advances of Ritter reaction and its synthetic applications. Org Chem Front 2021. [DOI: 10.1039/d1qo00496d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a comprehensive survey of Ritter reactions from 2014 to 2020.
Collapse
Affiliation(s)
- Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Rui Ye
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jian-Wei Lv
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
5
|
Mohammadi Ziarani G, Soltani Hasankiadeh F, Mohajer F. Recent Applications of Ritter Reactions in Organic Syntheses. ChemistrySelect 2020. [DOI: 10.1002/slct.202003470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Fatemeh Mohajer
- Department of Chemistry Faculty of Physics and Chemistry Alzahra University, Tehran Iran
| |
Collapse
|
6
|
Oe C, Hayashi H, Hirata K, Kawaji K, Hashima F, Sasano M, Furuichi M, Usui E, Katsumi M, Suzuki Y, Nakajima C, Kaku M, Kodama EN. Pyrimidine Analogues as a New Class of Gram-Positive Antibiotics, Mainly Targeting Thymineless-Death Related Proteins. ACS Infect Dis 2020; 6:1490-1500. [PMID: 31540548 DOI: 10.1021/acsinfecdis.9b00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multidrug-resistant (MDR) bacteria are widespread throughout the world and pose an increasingly serious threat to human and animal health. Besides implementing strict measures to prevent improper antibiotic use, it remains essential that novel antibiotics must be developed. These antibiotics need to exert their activity via mechanisms different from those employed by currently approved antibiotics. In this study, we used several 5-fluorouracil (5-FU) analogues as chemical probes and investigated the potential of these pyrimidine analogues as antibacterial agents. Several 5-FU derivatives exerted potent activity against strains of Gram-positive cocci (GPC) that are susceptible or resistant toward approved antibiotics, without showing cross-resistance. Furthermore, we have provided evidence that the pyrimidine analogues exerted anti-GPC activity via thymineless death by inhibition of thymidylate synthetase (ThyA) and/or inhibition of RNA synthesis. Interestingly, whole genome resequencing of in vitro-selected, pyrimidine analogue-resistant Staphylococcus aureus mutants indicated that S. aureus strains with pyrimidine-analogue resistance induced an amino acid (AA) substitution, deletion, and/or insertion into thymineless-death related proteins except for ThyA, or enhanced the ThyA transcription level. Thus, S. aureus may avoid altering the ThyA function by introducing an AA substitution, suggesting that the pyrimidine analogues, which directly bind to ThyA without phosphorylation, may be more effective and show a higher genetic barrier than the pyrimidines that depend on phosphorylation for activity. The findings of this study may assist in the future development of a novel class of antibiotics for combating MDR GPC, including methicillin-resistant S. aureus and vancomycin-resistant Enterococci.
Collapse
Affiliation(s)
- Chihiro Oe
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hironori Hayashi
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazushige Hirata
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Kumi Kawaji
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Fusako Hashima
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Mina Sasano
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Maaya Furuichi
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Emiko Usui
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Makoto Katsumi
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Centre for Zoonosis Control, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Centre for Zoonosis Control, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Mitsuo Kaku
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Eiichi N. Kodama
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Infectious Diseases, Graduate School of Medicine and Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
7
|
Patel B, Ryan P, Makwana V, Zunk M, Rudrawar S, Grant G. Caprazamycins: Promising lead structures acting on a novel antibacterial target MraY. Eur J Med Chem 2019; 171:462-474. [DOI: 10.1016/j.ejmech.2019.01.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
|
8
|
Wiker F, Hauck N, Grond S, Gust B. Caprazamycins: Biosynthesis and structure activity relationship studies. Int J Med Microbiol 2019; 309:319-324. [PMID: 31138496 DOI: 10.1016/j.ijmm.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022] Open
Abstract
Cell wall biosynthesis represents a valid target for antibacterial action but only a limited number of chemical structure classes selectively interact with specific enzymes or protein structures like transporters of the cell envelope. The integral membrane protein MraY translocase is essential for peptidoglycan biosynthesis catalysing the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate, thereby generating the cell wall intermediate lipid I. Not present in eukaryotic cells, MraY is a member of the superfamily of yet not well-understood integral membrane enzymes which involve proteins for bacterial lipopolysaccharide and teichoic acid or eukaryotic N-linked saccharides biosynthesis. Different natural nucleoside antibiotics as inhibitors of MraY translocase have been discovered comprising a glycosylated heterocyclic pyrimidin base among other potential lipid-, peptidic- or sugar moieties. Caprazamycins are liponucleoside antibiotics isolated from Streptomyces sp. MK730-62F2. They possess activity in vitro against Gram-positive bacteria, in particular against the genus Mycobacterium including M. intracellulare, M. avium and M. tuberculosis. Structural elucidation revealed the (+)-caprazol core skeleton as a unique moiety, the caprazamycins share with other MraY inhibitors such as the liposidomycins, A-90289 and the muraminomicins. They also share structural features such as uridyl-, aminoribosyl- and fatty acyl-moieties with other MraY translocase inhibitors like FR-900493 and the muraymycins. Intensive studies on their biosynthesis during the last decade identified not only common initial biosynthetic steps, but also revealed possible branching points towards individual biosynthesis of the respective compound. Structural diversity of caprazamycins was generated by feeding experiments, genetic engineering of the biosynthetic gene clusters and chemical synthesis for structure activity relationship studies with its target, MraY translocase.
Collapse
Affiliation(s)
- Franziska Wiker
- Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany
| | - Nils Hauck
- Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Bertolt Gust
- Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Linder R, Ducho C. Unified Synthesis of Densely Functionalized Amino Acid Building Blocks for the Preparation of Caprazamycin Nucleoside Antibiotics. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruth Linder
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2 3 66123 Saarbrücken Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2 3 66123 Saarbrücken Germany
| |
Collapse
|
10
|
Ben Othman R, Fer MJ, Le Corre L, Calvet-Vitale S, Gravier-Pelletier C. Effect of uridine protecting groups on the diastereoselectivity of uridine-derived aldehyde 5'-alkynylation. Beilstein J Org Chem 2017; 13:1533-1541. [PMID: 28845198 PMCID: PMC5550804 DOI: 10.3762/bjoc.13.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
The 5'-alkynylation of uridine-derived aldehydes is described. The addition of alkynyl Grignard reagents on the carbonyl group is significantly influenced by the 2',3'-di-O-protecting groups (R1): O-alkyl groups led to modest diastereoselectivities (65:35) in favor of the 5'R-isomer, whereas O-silyl groups promoted higher diastereoselectivities (up to 99:1) in favor of the 5'S-isomer. A study related to this protecting group effect on the diastereoselectivity is reported.
Collapse
Affiliation(s)
- Raja Ben Othman
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| | - Mickaël J Fer
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| | - Laurent Le Corre
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| | - Sandrine Calvet-Vitale
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| | - Christine Gravier-Pelletier
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité (USPC), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), 45 rue des Saints Pères, 75270 Paris 06, France
| |
Collapse
|
11
|
Subba Reddy BV, Nair PN, Antony A, Lalli C, Grée R. The Aza-Prins Reaction in the Synthesis of Natural Products and Analogues. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601411] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- B. V. Subba Reddy
- Centre for Semio Chemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| | - Preethi Narayanan Nair
- Centre for Semio Chemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| | - Aneesh Antony
- Centre for Semio Chemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| | - Claudia Lalli
- Université de Rennes 1; Institut des Sciences Chimiques de Rennes, CNRS UMR 6226; Avenue du Pr. Léon Bernard 35043 Rennes-Cedex France
| | - René Grée
- Université de Rennes 1; Institut des Sciences Chimiques de Rennes, CNRS UMR 6226; Avenue du General Leclerc 35042 Rennes-Cedex France
| |
Collapse
|
12
|
Chiba T, Nakaya T, Katayama K, Matsuda A, Ichikawa S. Natural Product Synthesis by Multicomponent Reaction and Structure-activity Relationship Study. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|