1
|
Jung Y, Kwon C, Kim T, Lee JW, Shin MK, Shim SH. Tetramic acid-motif natural products from a marine fungus Tolypocladium cylindrosporum FB06 and their anti-Parkinson activities. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:84-92. [PMID: 38433962 PMCID: PMC10902239 DOI: 10.1007/s42995-023-00198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/09/2023] [Indexed: 03/05/2024]
Abstract
Tetramic acid-containing natural products are attracting significantly increasing attention from biologists and chemists due to their intriguing structures and biological activities. In the present study, two new tetramic acid alkaloids tolypyridone I (1) and tolypyridone J (2), together with five known ones (3-7), were isolated from cultures of a marine fungus Tolypocladium cylindrosporum FB06 isolate obtained from a marine sediment in Beaufort sea of North Alaska. Their structures were elucidated using 1D, 2D NMR, and HRESIMS. Their configurations were established on the basis of 1H coupling constants, ROESY correlations and DP4 calculations. Compound 2 was isolated as mixtures of rotational isomers with C-3 to C-7 axis between 4-hydroxy-2-pyridone and 1-ethyl-3,5-dimethylcyclohexane, hindering rotation. In our unbiased screening to discover neuroprotective compounds in an in vitro Parkinson's disease (PD) model, SH-SY5Y dopaminergic cells were treated with isolated compounds followed by treatment with 1-methyl-4-phenylpyridinium (MPP+), a parkinsonian neurotoxin. Among tested compounds, F-14329 (7) significantly protected cells from MPP+-induced cytotoxicity. MPP+-mediated cell death is known to be related to the regulation of Bcl-2 family proteins, specifically the down-regulation of anti-apoptotic Bcl-2 and the up-regulation of pro-apoptotic Bax levels. Treatment with 2 mmol/L of MPP+ for 24 h significantly reduced Bcl-2 levels compared to control treated with vehicle. However, treatment with F-14329 (7) attenuated such reduction. This study demonstrates that tetramic acid-motif compounds could be potential lead compounds for treating PD. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00198-7.
Collapse
Affiliation(s)
- Yuna Jung
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Chaesun Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Taeyeon Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul, 01369 Republic of Korea
| | - Min-Kyoo Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
2
|
Gao Y, Wang J, Meesakul P, Zhou J, Liu J, Liu S, Wang C, Cao S. Cytotoxic Compounds from Marine Fungi: Sources, Structures, and Bioactivity. Mar Drugs 2024; 22:70. [PMID: 38393041 PMCID: PMC10890532 DOI: 10.3390/md22020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.
Collapse
Affiliation(s)
- Yukang Gao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jianjian Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| | - Jiamin Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jinyan Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shuo Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| |
Collapse
|
3
|
Liu X, Li RQ, Zeng QX, Li YQ, Chen XA. A Novel Zn 2Cys 6 Transcription Factor, TopC, Positively Regulates Trichodin A and Asperpyridone A Biosynthesis in Tolypocladium ophioglossoides. Microorganisms 2023; 11:2578. [PMID: 37894236 PMCID: PMC10609478 DOI: 10.3390/microorganisms11102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Asperpyridone A represents an unusual class of pyridone alkaloids with demonstrated potential for hypoglycemic activity, primarily by promoting glucose consumption in HepG2 cells. Trichodin A, initially isolated from the marine fungus Trichoderma sp. strain MF106, exhibits notable antibiotic activities against Staphylococcus epidermidis. Despite their pharmacological significance, the regulatory mechanisms governing their biosynthesis have remained elusive. In this investigation, we initiated the activation of a latent gene cluster, denoted as "top", through the overexpression of the Zn2Cys6 transcription factor TopC in Tolypocladium ophioglossoides. The activation of the top cluster led to the biosynthesis of asperpyridone A, pyridoxatin, and trichodin A. Our study also elucidated that the regulator TopC exerts precise control over the biosynthesis of asperpyridone A and trichodin A through the detection of protein-nucleic acid interactions. Moreover, by complementing these findings with gene deletions involving topA and topH, we proposed a comprehensive biosynthesis pathway for asperpyridone A and trichodin A in T. ophioglossoides.
Collapse
Affiliation(s)
- Xiang Liu
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Rui-Qi Li
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qing-Xin Zeng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xin-Ai Chen
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
4
|
Rybczyńska-Tkaczyk K, Grenda A, Jakubczyk A, Krawczyk P. Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells. Molecules 2023; 28:molecules28114381. [PMID: 37298856 DOI: 10.3390/molecules28114381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the increasing availability of modern treatments, including personalized therapies, there is a strong need to search for new drugs that will be effective in the fight against cancer. The chemotherapeutics currently available to oncologists do not always yield satisfactory outcomes when used in systemic treatments, and patients experience burdensome side effects during their application. In the era of personalized therapies, doctors caring for non-small cell lung cancer (NSCLC) patients have been given a powerful weapon, namely molecularly targeted therapies and immunotherapies. They can be used when genetic variants of the disease qualifying for therapy are diagnosed. These therapies have contributed to the extension of the overall survival time in patients. Nevertheless, effective treatment may be hindered in the case of clonal selection of tumor cells with acquired resistance mutations. The state-of-the-art therapy currently used in NSCLC patients is immunotherapy targeting the immune checkpoints. Although it is effective, some patients have been observed to develop resistance to immunotherapy, but its cause is still unknown. Personalized therapies extend the lifespan and time to cancer progression in patients, but only those with a confirmed marker qualifying for the treatment (gene mutations/rearrangements or PD-L1 expression on tumor cells) can benefit from these therapies. They also cause less burdensome side effects than chemotherapy. The article is focused on compounds that can be used in oncology and produce as few side effects as possible. The search for compounds of natural origin, e.g., plants, bacteria, or fungi, exhibiting anticancer properties seems to be a good solution. This article is a literature review of research on compounds of natural origin that can potentially be used as part of NSCLC therapies.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna Street 8, 20-704 Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| |
Collapse
|
5
|
Wu XQ, Li J, Zhou X, Wang J, Tan YF, Mo JS, Liu S, Xu KP, Tan GS, Zhang W, Wang WX. Liver-cell protective pyridones from the fungi Tolypocladium album dws120. PHYTOCHEMISTRY 2023; 212:113730. [PMID: 37220864 DOI: 10.1016/j.phytochem.2023.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
Five previously undescribed pyridone derivatives, tolypyridones I-M, were identified from the solid rice medium fermented by Tolypocladium album dws120, along with two known compounds tolypyridone A (or trichodin A) and pyridoxatin. Their planar structures and partial relative configurations have been determined by careful interpretation of their spectroscopic data. The full assignment of the relative and absolute configurations of tolypyridones I-M was achieved by gauge-independent atomic orbital 13C NMR calculation, quantitative nuclear Overhauser effects based interatomic distance calculation, and electronic circular dichroism calculation. In addition, we have fully determined the configuration of tolypyridone A by X-ray diffraction analysis. In bioassay, tolypyridones I was able to restore cell viability and inhibit the release of alanine aminotransferase and aspartate aminotransferase for ethanol-induced LO2 cell, suggesting its potential as a liver protective agent.
Collapse
Affiliation(s)
- Xiao-Qian Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410008, PR China
| | - Jing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410008, PR China; Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xi Zhou
- School of Life Sciences, Central South University, Changsha, Hunan, 410008, PR China
| | - Jing Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410008, PR China
| | - Yu-Fen Tan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Ji-Song Mo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410008, PR China
| | - Shao Liu
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410008, PR China
| | - Gui-Shan Tan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Wei Zhang
- Hunan Institute for Drug Control, Changsha, Hunan, 410001, PR China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
6
|
Wu CZ, Li G, Zhang YH, Yuan SZ, Dong KM, Lou HX, Peng XP. Interconvertible Pyridone Alkaloids from the Marine-Derived Fungus Penicillium oxalicum QDU1. JOURNAL OF NATURAL PRODUCTS 2023; 86:739-750. [PMID: 36888988 DOI: 10.1021/acs.jnatprod.2c00886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eleven new pyridone alkaloids, penicipyridones A-K (1-11), and three new tetramic acids, tolypocladenols D-F (12-14), were isolated from rice media cultures of the marine-derived fungus Penicillium oxalicum QDU1. Their structures, including absolute configurations, were determined by comprehensive analyses of spectroscopic data, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction data. Interestingly, several of the penicipyridones undergo interconversions between hydroxy and methoxy groups at C-4 in acidic MeOH solution. Furthermore, in an acidic aqueous solution, OH-4 could be replaced by diverse substituent groups. Compounds 1, 4, 5, 8, 10, 11, and 14 exhibited moderate inhibitory effects on NO production in the LPS-induced RAW264.7 macrophages, with IC50 values ranging from 9.2 to 19 μM.
Collapse
Affiliation(s)
- Chang-Zheng Wu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yu-Han Zhang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Shuang-Zhi Yuan
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250100, China
| | - Ke-Min Dong
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Hong-Xiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Ping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Shevkar C, Pradhan P, Armarkar A, Pandey K, Kalia K, Paranagama P, Kate AS. Exploration of Potent Cytotoxic Molecules from Fungi in Recent Past to Discover Plausible Anticancer Scaffolds. Chem Biodivers 2022; 19:e202100976. [PMID: 35315213 DOI: 10.1002/cbdv.202100976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Fungi are known to produce diverse scaffolds possessing unique biological activities, however, to date, no molecule discovered from a fungal source has reached the market as an anti-cancer drug. Every year number of cytotoxic molecules of fungal origin are getting published and critical analysis of those compounds is necessary to identify the potent ones. A review mentioning the best cytotoxic fungal metabolites and their status in the drug development was published in 2014. In this report, we have included 176 cytotoxic molecules isolated from fungi after 2014 and categorized them according to their potencies such as IC50 values below 1 μM, 1-5 μM, and 5-10 μM. The emphasis was given to those 42 molecules which have shown IC50 less than 1 μM and discussed to a great extent. This review shall provide potent scaffolds of fungal origin which can be given priority in the development as a drug candidate for cancer therapeutics.
Collapse
Affiliation(s)
- Chaitrali Shevkar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Pranali Pradhan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Ashwini Armarkar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Komal Pandey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Priyani Paranagama
- Department of Chemistry, University of Kelaniya, Dalugama, Kelaniya, 11600, Sri Lanka
| | - Abhijeet S Kate
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| |
Collapse
|
8
|
Zhang R, Genov M, Pretsch A, Pretsch D, Moloney MG. Mediation of metal chelation in cysteine-derived tetramate systems. Chem Sci 2021; 12:16106-16122. [PMID: 35024133 PMCID: PMC8672780 DOI: 10.1039/d1sc05542a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
A study of bicyclic tetramates modified with a bulky ester, which leads to steric hindrance of distal chelating atoms as a route for the alteration of metal binding ability is reported. This approach required the development of a direct method for the synthesis of different esters of cysteine from cystine, which then provided access to bicyclic tetramates by Dieckmann cyclisation. Further derivation to ketones and carboxamides by Grignard addition and transamination reactions respectively provided rapid access to a chemical library of tetramates with diverse substitution. Of interest is that bicyclic tetramate ketones and carboxamides showed different tautomeric and metal binding behaviour in solution. Significantly, in both systems, the incorporation of bulky C-5 esters at the bridging position not only reduced metal binding, but also enhanced antibacterial potencies against Gram-positive MRSA bacteria. Those tetramates with antibacterial activity which was not metal dependent showed physiochemical properties of MSA of 559-737 Å2, MW of 427-577 Da, clogP of 1.8-6.1, clogD7.4 of -1.7 to 3.7, PSA of 83-109 Å2 and relative PSA of 12-15% and were generally Lipinski rule compliant. A subset of tetramates exhibited good selectivity towards prokaryotic bacterial cells. Given that the work reported herein is synthesis-led, without the underpinning detailed mechanistic understanding of biological/biochemical mechanism, that the most active compounds occupy a small region of chemical space as defined by MW, clogP, PSA and %PSA is of interest. Overall, the bicyclic tetramate template is a promising structural motif for the development of novel antibacterial drugs, with good anti-MRSA potencies and appropriate drug-like physiochemical properties, coupled with a potential for multi-targeting mechanisms and low eukaryotic cytotoxicity.
Collapse
Affiliation(s)
- Ruirui Zhang
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Miroslav Genov
- Oxford Antibiotic Group The Oxford Science Park, Magdalen Centre Oxford OX4 4GA UK
| | - Alexander Pretsch
- Oxford Antibiotic Group The Oxford Science Park, Magdalen Centre Oxford OX4 4GA UK
| | - Dagmar Pretsch
- Oxford Antibiotic Group The Oxford Science Park, Magdalen Centre Oxford OX4 4GA UK
| | - Mark G Moloney
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK .,Oxford Suzhou Centre for Advanced Research Building A, 388 Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
9
|
Moloney MG, O’Shaughnessy L, Hutchinson C, Waldron A, Christensen KE. Pyrroloimidazolediones Derived from Aminomalonates and Benzaldehydes. Synlett 2021. [DOI: 10.1055/s-0040-1720888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractBicyclic lactams can be prepared from diethyl aminomalonate and substituted benzaldehydes by formation of a dimerised imidazolidine cycloadduct followed by a Dieckmann ring closure. The resulting N,N-heterocycles are metal-chelating but show no antibacterial activity.
Collapse
Affiliation(s)
- Mark G. Moloney
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford
- Oxford Suzhou Centre for Advanced Research
| | - Lewis O’Shaughnessy
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford
| | - Charles Hutchinson
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford
| | - Adam Waldron
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford
| | | |
Collapse
|
10
|
Motoyama T, Ishii T, Kamakura T, Osada H. Screening of tenuazonic acid production-inducing compounds and identification of NPD938 as a regulator of fungal secondary metabolism. Biosci Biotechnol Biochem 2021; 85:2200-2208. [PMID: 34379730 DOI: 10.1093/bbb/zbab143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
The control of secondary metabolism in fungi is essential for the regulation of various cellular functions. In this study, we searched the RIKEN Natural Products Depository (NPDepo) chemical library for inducers of tenuazonic acid (TeA) production in the rice blast fungus Pyricularia oryzae and identified NPD938. NPD938 transcriptionally induced TeA production. We explored the mode of action of NPD938 and observed that this compound enhanced TeA production via LAE1, a global regulator of fungal secondary metabolism. NPD938 could also induce production of terpendoles and pyridoxatins in Tolypocladium album RK99-F33. Terpendole production was induced transcriptionally. We identified the pyridoxatin biosynthetic gene cluster among transcriptionally induced secondary metabolite biosynthetic gene clusters. Therefore, NPD938 is useful for the control of fungal secondary metabolism.
Collapse
Affiliation(s)
| | - Tomoaki Ishii
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
| |
Collapse
|
11
|
Zhang R, Genov M, Pretsch A, Pretsch D, Moloney MG. Metal Binding and Its Amelioration in Tetramates. J Org Chem 2021; 86:12886-12907. [PMID: 34465089 DOI: 10.1021/acs.joc.1c01541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal chelation in tetramates may be ameliorated by changing the ligating group and by steric blocking, which in turn leads to a change in their antibacterial properties; the former was achieved by replacement of an amide with a C-9 C═N bond and the latter by the synthesis of cysteine-derived tetramates with functionalization at the C-6 or C-9 enolic groups. In both cases, the metal-chelating ability was weak, and a loss of antibacterial activity was observed. Tetramate alkylations with an extended tricarbonyl-conjugated system could be achieved under Mitsunobu conditions which led to regioisomers, distinguishable by careful heteronuclear multiple bond coherence correlation and carbonyl carbon chemical shift analysis. C-9 and C-6 O-alkylation were observed but not C-8 O-alkylation for tetramate carboxamides; interestingly, C-7 alkylation with allyl and prenyl derivatives was also observed, and this arose by the rearrangement of initially formed O-alkyl products. Only the C-7 alkylated tetramate derivatives 13a and 13d with no metal-chelating ability demonstrated promising antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), with the most active analogue exhibiting a minimum inhibitory concentration of ≤ 1.95 μg/mL against MRSA, suggesting a mechanism of action independent of metal chelation. Otherwise, modifications at C-6/C-9 of tetramates led to a complete loss of metal-chelating ability, which correlated with the loss of antibacterial activity. This work further confirms that the metal-chelating capability is of fundamental importance in the biological activity of tetramates.
Collapse
Affiliation(s)
- Ruirui Zhang
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Miroslav Genov
- Oxford Antibiotic Group, The Oxford Science Park, Magdalen Centre, Oxford OX4 4GA, U.K
| | - Alexander Pretsch
- Oxford Antibiotic Group, The Oxford Science Park, Magdalen Centre, Oxford OX4 4GA, U.K
| | - Dagmar Pretsch
- Oxford Antibiotic Group, The Oxford Science Park, Magdalen Centre, Oxford OX4 4GA, U.K
| | - Mark G Moloney
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Oxford Suzhou Centre for Advanced Research, Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Jiangsu 215123, P.R. China
| |
Collapse
|
12
|
Sakai K, Unten Y, Kimishima A, Nonaka K, Chinen T, Sakai K, Usui T, Shiomi K, Iwatsuki M, Murai M, Miyoshi H, Asami Y, Ōmura S. Traminines A and B, produced by Fusarium concentricum, inhibit oxidative phosphorylation in Saccharomyces cerevisiae mitochondria. J Ind Microbiol Biotechnol 2021; 48:6338109. [PMID: 34343309 PMCID: PMC8788869 DOI: 10.1093/jimb/kuab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022]
Abstract
Two new tetramic acid derivatives, traminines A (1) and B (2), were isolated from a culture broth of Fusarium concentricum FKI-7550 by bioassay-guided fractionation using multidrug-sensitive Saccharomyces cerevisiae 12geneΔ0HSR-iERG6. The chemical structures of 1 and 2 were elucidated by NMR studies. Compounds 1 and 2 inhibited the growth of the multidrug-sensitive yeast strain on nonfermentable medium containing glycerol, but not on fermentable medium containing glucose. These results strongly suggest that they target mitochondrial machineries presiding over ATP production via oxidative phosphorylation. Throughout the assay monitoring overall ADP-uptake/ATP-release in yeast mitochondria, 1 and 2 were shown to inhibit one or more enzymes involving oxidative phosphorylation. Based on biochemical characterization, we found that the interference with oxidative phosphorylation by 1 is attributable to the dual inhibition of complex III and FoF1-ATPase, whereas that by 2 is solely due to the inhibition of complex III.
Collapse
Affiliation(s)
- Katsuyuki Sakai
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Takumi Chinen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazunari Sakai
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
13
|
Mohamed OG, Khalil ZG, Capon RJ. N-Amino-l-Proline Methyl Ester from an Australian Fish Gut-Derived Fungus: Challenging the Distinction between Natural Product and Artifact. Mar Drugs 2021; 19:md19030151. [PMID: 33809174 PMCID: PMC7999761 DOI: 10.3390/md19030151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/04/2023] Open
Abstract
Further investigation into a fish gut-derived fungus Evlachovaea sp. CMB-F563, previously reported to produce the unprecedented Schiff base prolinimines A–B (1–2), revealed a new cryptic natural product, N-amino-l-proline methyl ester (5)—only the second reported natural occurrence of an N-amino-proline, and the first from a microbial source. To enable these investigations, we developed a highly sensitive analytical derivitization methodology, using 2,4-dinitrobenzaldehyde (2,4-DNB) to cause a rapid in situ transformation of 5 to the Schiff base 9, with the latter more readily detectable by UHPLC-DAD (400 nm) and HPLC-MS analyses. Moreover, we demonstrate that during cultivation 5 is retained in fungal mycelia, and it is only when solvent extraction disrupts mycelia that 5 is released to come in contact with the furans 7–8 (which are themselves produced by thermal transformation of carbohydrates during media autoclaving prior to fungal inoculation). Significantly, on contact, 5 undergoes a spontaneous condensation with 7–8 to yield the Schiff base prolinimines 1–2, respectively. Observations made during this study prompted us to reflect on what it is to be a natural product (i.e., 5), versus an artifact (i.e., 1–2), versus a media component (i.e., 7–8).
Collapse
Affiliation(s)
- Osama G. Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (O.G.M.); (Z.G.K.)
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (O.G.M.); (Z.G.K.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (O.G.M.); (Z.G.K.)
- Correspondence:
| |
Collapse
|
14
|
Zhang WY, Zhong Y, Yu Y, Shi DF, Huang HY, Tang XL, Wang YH, Chen GD, Zhang HP, Liu CL, Hu D, Gao H, Yao XS. 4-Hydroxy Pyridones from Heterologous Expression and Cultivation of the Native Host. JOURNAL OF NATURAL PRODUCTS 2020; 83:3338-3346. [PMID: 33095987 DOI: 10.1021/acs.jnatprod.0c00675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
4-Hydroxy pyridones are a class of fungi-derived polyketide-nonribosomal peptide products featuring a core of 4-hydroxy-2-pyridone which have a wide range of biological activities. Genome mining of in-house strains using polyketide synthase-nonribosomal peptide synthase as a query identified an endophyte Tolypocladium sp. 49Y, which possesses a potential 4-hydroxy pyridone biosynthetic gene cluster. Heterologous expression in Aspergillus oryzae NSAR1 revealed that this gene cluster is functional and able to produce a rare type of 4-hydroxy pyridones called tolypyridones (compounds 3 and 4). Tolypocladium sp. 49Y was grown in a variety of media which led to the isolation of six 4-hydroxy pyridones (5-10) and one pyrrolidone (11) from a rice culture, and compounds 3 and 9 showed antifungal activity. These latter compounds are different from those obtained by heterologous expression. This study shows that both heterologous expression and cultivation of the native host are complementary approaches to discover new natural products.
Collapse
Affiliation(s)
- Wei-Yang Zhang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yue Zhong
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan-Feng Shi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hui-Yun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Long Tang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hui-Ping Zhang
- RIKEN SPring-8 Center, Yokohama, Kanagawa 2300045, Japan
| | - Chen-Li Liu
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
15
|
The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar Drugs 2020; 18:md18020114. [PMID: 32075282 PMCID: PMC7074263 DOI: 10.3390/md18020114] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Tetramic acid (pyrrolidine-2,4-dione) compounds, isolated from a variety of marine and terrestrial organisms, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities. In the past decade, marine-derived microorganisms have become great repositories of novel tetramic acids. Here, we discuss the biological activities of 277 tetramic acids of eight classifications (simple 3-acyl tetramic acids, 3-oligoenoyltetramic acids, 3-decalinoyltetramic acid, 3-spirotetramic acids, macrocyclic tetramic acids, N-acylated tetramic acids, α-cyclopiazonic acid-type tetramic acids, and other tetramic acids) from marine-derived microbes, including fungi, actinobacteria, bacteria, and cyanobacteria, as reported in 195 research studies up to 2019.
Collapse
|
16
|
Li J, Tan H, An Y, Shao Z, Zhao S. Synthesis and DABCO‐induced demethylation of 3‐cyano‐4‐methoxy‐2‐pyridone derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jing Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Hong‐Ru Tan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Yu‐Long An
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Zhi‐Yu Shao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Sheng‐Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| |
Collapse
|
17
|
Li J, Chen M, Hao X, Li S, Li F, Yu L, Xiao C, Gan M. Structural Revision and Absolute Configuration of Burnettramic Acid A. Org Lett 2019; 22:98-101. [DOI: 10.1021/acs.orglett.9b04008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiao Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Shasha Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Fang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Chunling Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| |
Collapse
|
18
|
Jiao WH, Salim AA, Khalil ZG, Dewapriya P, Lin HW, Butler MS, Capon RJ. Trivirensols: Selectively Bacteriostatic Sesquiterpene Trimers from the Australian Termite Nest-Derived Fungus Trichoderma virens CMB-TN16. JOURNAL OF NATURAL PRODUCTS 2019; 82:3165-3175. [PMID: 31625738 DOI: 10.1021/acs.jnatprod.9b00760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The termite nest-derived fungus Trichoderma virens CMB-TN16 cultivated on rice-based media produced seven new first-in-class trimeric sesquiterpenes, trivirensols A-G (11-17). Structures inclusive of absolute configurations were assigned by detailed spectroscopic analysis and biosynthetic considerations. Although trivirensols exhibit no cytotoxicity to mammalian carcinoma cells, selected examples are bacteriostatic against vancomycin-resistant Enterococcus faecalis (VRE). Structure-activity relationship (SAR) investigations combined with in situ chemical stability studies documented bacteriostatic activity for trivirensols A (11) and B (12) and the co-metabolite divirensols A (4), B (5), and G (10), all of which share a common terminal butenolide. Significantly, SAR studies also revealed bacteriostatic activity for trivirensols C (13) and G (17) and the co-metabolite divirensol C (6), all of which share a common hydrated butenolide terminal. Of note, when exposed to VRE cell cultures, the hydrated butenolides 6, 13, and 17 undergo rapid in situ dehydration to corresponding butenolides, suggesting hydrated butenolides are a pro-drug form of the butenolide VRE bacteriostatic pharmacophore.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Angela A Salim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Zeinab G Khalil
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Pradeep Dewapriya
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Mark S Butler
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Robert J Capon
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| |
Collapse
|
19
|
Stringlis IA, Zhang H, Pieterse CMJ, Bolton MD, de Jonge R. Microbial small molecules - weapons of plant subversion. Nat Prod Rep 2019; 35:410-433. [PMID: 29756135 DOI: 10.1039/c7np00062f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to 2018 Plants live in close association with a myriad of microbes that are generally harmless. However, the minority of microbes that are pathogens can severely impact crop quality and yield, thereby endangering food security. By contrast, beneficial microbes provide plants with important services, such as enhanced nutrient uptake and protection against pests and diseases. Like pathogens, beneficial microbes can modulate host immunity to efficiently colonize the nutrient-rich niches within and around the roots and aerial tissues of a plant, a phenomenon mirroring the establishment of commensal microbes in the human gut. Numerous ingenious mechanisms have been described by which pathogenic and beneficial microbes in the plant microbiome communicate with their host, including the delivery of immune-suppressive effector proteins and the production of phytohormones, toxins and other bioactive molecules. Plants signal to their associated microbes via exudation of photosynthetically fixed carbon sources, quorum-sensing mimicry molecules and selective secondary metabolites such as strigolactones and flavonoids. Molecular communication thus forms an integral part of the establishment of both beneficial and pathogenic plant-microbe relations. Here, we review the current knowledge on microbe-derived small molecules that can act as signalling compounds to stimulate plant growth and health by beneficial microbes on the one hand, but also as weapons for plant invasion by pathogens on the other. As an exemplary case, we used comparative genomics to assess the small molecule biosynthetic capabilities of the Pseudomonas genus; a genus rich in both plant pathogenic and beneficial microbes. We highlight the biosynthetic potential of individual microbial genomes and the population at large, providing evidence for the hypothesis that the distinction between detrimental and beneficial microbes is increasingly fading. Knowledge on the biosynthesis and molecular activity of microbial small molecules will aid in the development of successful biological agents boosting crop resiliency in a sustainable manner and could also provide scientific routes to pathogen inhibition or eradication.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Chen SC, Liu ZM, Tan HB, Chen YC, Li SN, Li HH, Guo H, Zhu S, Liu HX, Zhang WM. Tersone A-G, New Pyridone Alkaloids from the Deep-Sea Fungus Phomopsis tersa. Mar Drugs 2019; 17:md17070394. [PMID: 31277263 PMCID: PMC6669727 DOI: 10.3390/md17070394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023] Open
Abstract
Four phenylfuropyridone racemates, (±)-tersones A-C and E (1–3, 5), one phenylpyridone racemate, (±)-tersone D (4), one new pyridine alkaloid, tersone F (6), single new phenylfuropyridone, tersone G (7) and two known analogs 8 and 9 were isolated from the deep-sea fungus Phomopsis tersa. Their structures and absolute configurations were characterized on the basis of comprehensive spectroscopic analyses, single-crystal X-ray diffraction experiments, and electronic circular dichroism (ECD) calculations. Moreover, compounds 1–9 were evaluated for in vitro antimicrobial and cytotoxic activity. Compounds 5b and 8b exhibited antibacterial activity against S. aureus with the MIC value of 31.5 μg/mL, while compound 5b showed cytoxic activities against SF-268, MCF-7, HepG-2 and A549 cell lines with IC50 values of 32.0, 29.5, 39.5 and 33.2 μM, respectively.
Collapse
Affiliation(s)
- Shan-Chong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhao-Ming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hai-Bo Tan
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yu-Chan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Sai-Ni Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hao-Hua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Heng Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shuang Zhu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong-Xin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Wei-Min Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
21
|
Sakai K, Unten Y, Iwatsuki M, Matsuo H, Fukasawa W, Hirose T, Chinen T, Nonaka K, Nakashima T, Sunazuka T, Usui T, Murai M, Miyoshi H, Asami Y, Ōmura S, Shiomi K. Fusaramin, an antimitochondrial compound produced by Fusarium sp., discovered using multidrug-sensitive Saccharomyces cerevisiae. J Antibiot (Tokyo) 2019; 72:645-652. [DOI: 10.1038/s41429-019-0197-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
|
22
|
Panduwawala TD, Iqbal S, Thompson AL, Genov M, Pretsch A, Pretsch D, Liu S, Ebright RH, Howells A, Maxwell A, Moloney MG. Functionalised bicyclic tetramates derived from cysteine as antibacterial agents. Org Biomol Chem 2019; 17:5615-5632. [PMID: 31120090 PMCID: PMC6686852 DOI: 10.1039/c9ob01076a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Routes to bicyclic tetramates derived from cysteine permitting ready incorporation of functionality at two different points around the periphery of a heterocyclic skeleton are reported. This has enabled the identification of systems active against Gram-positive bacteria, some of which show gyrase and RNA polymerase inhibitory activity. In particular, tetramates substituted with glycosyl side chains, chosen to impart polarity and aqueous solubility, show high antibacterial activity coupled with modest gyrase/polymerase activity in two cases. An analysis of physicochemical properties indicates that the antibacterially active tetramates generally occupy physicochemical space with MW of 300-600, clog D7.4 of -2.5 to 4 and rel. PSA of 11-22%. This work demonstrates that biologically active 3D libraries are readily available by manipulation of a tetramate skeleton.
Collapse
Affiliation(s)
- Tharindi D Panduwawala
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Antioxidant activity and cellular uptake of the hydroxamate-based fungal iron chelators pyridoxatin, desferriastechrome and desferricoprogen. Biometals 2019; 32:707-715. [DOI: 10.1007/s10534-019-00202-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
|
24
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Jiao WH, Dewapriya P, Mohamed O, Khalil ZG, Salim AA, Lin HW, Capon RJ. Divirensols: Sesquiterpene Dimers from the Australian Termite Nest-Derived Fungus Trichoderma virens CMB-TN16. JOURNAL OF NATURAL PRODUCTS 2019; 82:87-95. [PMID: 30596497 DOI: 10.1021/acs.jnatprod.8b00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A chemical investigation of the Australian termite nest-derived fungus Trichoderma virens CMB-TN16 yielded the known sesquiterpene gliocladic acid (1), together with two new acetylated analogues, 3-acetylgliocladic acid (2) and 14-acetylgliocladic acid (3), and seven new dimeric congeners, divirensols A-G (4-10). All metabolites were identified by detailed spectroscopic analysis, supported by biosynthetic considerations, and were assessed for antibacterial and cytotoxic properties. The divirensols are examples of an exceptionally rare class of dimeric sesquiterpene, likely linked via a highly convergent biosynthetic pathway. HPLC-DAD-MS analysis of the crude fungal extract detected ions attributed to putative monomeric biosynthetic precursors.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Pradeep Dewapriya
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Osama Mohamed
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Zeinab G Khalil
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Angela A Salim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Robert J Capon
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| |
Collapse
|
26
|
Deshmukh SK, Prakash V, Ranjan N. Marine Fungi: A Source of Potential Anticancer Compounds. Front Microbiol 2018; 8:2536. [PMID: 29354097 PMCID: PMC5760561 DOI: 10.3389/fmicb.2017.02536] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Nihar Ranjan
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
27
|
|
28
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
29
|
Shang Z, Salim AA, Capon RJ. Chaunopyran A: Co-Cultivation of Marine Mollusk-Derived Fungi Activates a Rare Class of 2-Alkenyl-Tetrahydropyran. JOURNAL OF NATURAL PRODUCTS 2017; 80:1167-1172. [PMID: 28383912 DOI: 10.1021/acs.jnatprod.7b00144] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Co-cultivation of Chaunopycnis sp. (CMB-MF028) and Trichoderma hamatum (CMB-MF030), fungal strains co-isolated from the inner tissue of an intertidal rock platform mollusc (Siphonaria sp), resulted in transcriptional activation of a rare class of 2-alkenyl-tetrahydropyran, chaunopyran A (7), and biotransformation and deactivation of the antifungal pyridoxatin (1), to methyl-pyridoxatin (8). This study illustrates the complexity of offensive and counter-offensive molecular defenses encountered during fungal co-cultivation, and the opportunities for activating new, otherwise transcriptionally silent secondary metabolites.
Collapse
Affiliation(s)
- Zhuo Shang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , St Lucia, QLD 4072, Australia
| | - Angela A Salim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , St Lucia, QLD 4072, Australia
| | - Robert J Capon
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , St Lucia, QLD 4072, Australia
| |
Collapse
|
30
|
Bruckner S, Haase RG, Schobert R. A Synthetic Route to β-Hydroxytyrosine-Derived Tetramic Acids: Total Synthesis of the Fungal Metabolite F-14329. Chemistry 2017; 23:5692-5695. [DOI: 10.1002/chem.201701259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Bruckner
- Organic Chemistry Laboratory; University Bayreuth; Universitaetsstr. 30 95447 Bayreuth Germany
| | - Robert G. Haase
- Organic Chemistry Laboratory; University Bayreuth; Universitaetsstr. 30 95447 Bayreuth Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory; University Bayreuth; Universitaetsstr. 30 95447 Bayreuth Germany
| |
Collapse
|
31
|
X-Ray Crystallographic Analysis, EPR Studies, and Computational Calculations of a Cu(II) Tetramic Acid Complex. Bioinorg Chem Appl 2017; 2017:7895023. [PMID: 28316540 PMCID: PMC5337788 DOI: 10.1155/2017/7895023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/20/2016] [Accepted: 12/25/2016] [Indexed: 11/26/2022] Open
Abstract
In this work we present a structural and spectroscopic analysis of a copper(II) N-acetyl-5-arylidene tetramic acid by using both experimental and computational techniques. The crystal structure of the Cu(II) complex was determined by single crystal X-ray diffraction and shows that the copper ion lies on a centre of symmetry, with each ligand ion coordinated to two copper ions, forming a 2D sheet. Moreover, the EPR spectroscopic properties of the Cu(II) tetramic acid complex were also explored and discussed. Finally, a computational approach was performed in order to obtain a detailed and precise insight of product structures and properties. It is hoped that this study can enrich the field of functional supramolecular systems, giving place to the formation of coordination-driven self-assembly architectures.
Collapse
|
32
|
Shang Z, Khalil Z, Li L, Salim AA, Quezada M, Kalansuriya P, Capon RJ. Roseopurpurins: Chemical Diversity Enhanced by Convergent Biosynthesis and Forward and Reverse Michael Additions. Org Lett 2016; 18:4340-3. [DOI: 10.1021/acs.orglett.6b02099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuo Shang
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab Khalil
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Angela A. Salim
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Michelle Quezada
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Pabasara Kalansuriya
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J. Capon
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
33
|
Grunwald AL, Berrué F, Overy DP, Kerr RG. Isolation of iqalisetins A and B from a Tolypocladium sp. isolated from marine sediment from Frobisher Bay in Canada’s arctic. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two new decalin-tetramic acid compounds, iqalisetin A (1) and iqalisetin B (2), were identified from a Tolypocladium sp. isolated from a marine sediment sample collected from Frobisher Bay, Nunavut, in Canada’s arctic. The structures of the new compounds were elucidated by NMR experiments. The relative stereochemistry of the decalin skeleton was determined by NOESY experiments and confirmed that 1 and 2 contained a trans-decalin ring system. The absolute stereochemistry of the tetramic acid was determined using Marfey’s method. Compounds 1 and 2 did not exhibit any significant antimicrobial or cytotoxic activity.
Collapse
Affiliation(s)
- Alyssa L. Grunwald
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
| | - Fabrice Berrué
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
| | - David P. Overy
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
| | - Russell G. Kerr
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
| |
Collapse
|
34
|
Zaghouani M, Nay B. 3-Acylated tetramic and tetronic acids as natural metal binders: myth or reality? Nat Prod Rep 2016; 33:540-8. [PMID: 26879987 DOI: 10.1039/c5np00144g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 20153-Acylated tetramic and tetronic acids are characterized by a low pKa and are likely to be deprotonated under physiological conditions. In addition, their structure makes them excellent chelators of metallic cations. We will discuss the significance of these chemical properties with regard to the biological properties and mechanisms of action of these compounds, highlighting the importance of considering them as salts or chelates for biological purposes, rather than acids.
Collapse
Affiliation(s)
- Mehdi Zaghouani
- Muséum National d'Histoire Naturelle, CNRS, UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, 57 rue Cuvier (CP 54), 75005 Paris, France.
| | | |
Collapse
|
35
|
Sun YL, Wang J, Wang YF, Zhang XY, Nong XH, Chen MY, Xu XY, Qi SH. Cytotoxic and antiviral tetramic acid derivatives from the deep-sea-derived fungus Trichobotrys effuse DFFSCS021. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|