1
|
Fu R, Lu Y, Yue G, Wu D, Xu L, Song H, Cao C, Yu X, Zong Y. Direct Synthesis of 3-Coumaranones with Calcium Carbide as an Acetylene Source. Org Lett 2021; 23:3141-3145. [PMID: 33819044 DOI: 10.1021/acs.orglett.1c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel synthesis method for the construction of 3-coumaranones from the reaction of two molecules, calcium carbide and salicylaldehyde, was reported. Various 2-methyl-2-vinylbenzofuran-3(2H)-ones could be obtained in moderate yields in the absence of a metal catalyst. The salient features of this protocol involve widely available starting materials, an inexpensive and easy-to-handle alkyne source, and a cost-efficient route. The reaction mechanism was verified by density functional theory calculations of possible intermediates and corresponding transition states.
Collapse
Affiliation(s)
- Rugang Fu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Yongzheng Lu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Guoren Yue
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Dongqing Wu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Li Xu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Hai Song
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Cheng Cao
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Xinghai Yu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Yingxiao Zong
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| |
Collapse
|
2
|
Sivamuthuraman K, Kesavan V. Catalytic enantioselective Michael addition of 2-substituted benzofuran-3-ones to 2-enoyl pyridines. Org Biomol Chem 2019; 17:7166-7171. [PMID: 31328210 DOI: 10.1039/c9ob01069f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic diastereo- and enantioselective synthesis of 2,2'-disubstituted benzofuran-3-ones bearing adjacent quaternary and tertiary stereocenters has been achieved through Michael addition of 2-substituted benzofuran-3-ones to 2-enoyl pyridines. Both the enantiomeric forms of the major diastereomer were obtained using l-proline derived squaramide and quinine derived bis squaramide with excellent yield (up to 98%) and stereoselectivities (up to 97 : 3 dr and 98% ee). The control experiment revealed that the presence and position of nitrogen atoms in the 2-enoylpyridine have played a crucial role in the stereochemical outcome of the product.
Collapse
Affiliation(s)
- Koilpitchai Sivamuthuraman
- Koilpitchai Sivamuthuraman, Venkitasamy Kesavan, Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Venkitasamy Kesavan
- Koilpitchai Sivamuthuraman, Venkitasamy Kesavan, Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, India.
| |
Collapse
|
3
|
Wang B, Wu K, Chen P, Liu K. Diastereo- and enantioselective conjugate addition of 3-substituted oxindoles to enones via bifunctional catalysts. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Hu B, Zhang Q, Zhao S, Wang Y, Xu L, Yan S, Yu F. Direct Oxidative Disulfenylation/Cyclization of 2′‐Hydroxyacetophenones with Thiophenols for the Synthesis of 2,2‐Dithio‐Benzofuran‐3(2
H
)‐Ones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biao Hu
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Qiaohe Zhang
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Siyun Zhao
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yanqin Wang
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Li Xu
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Shengjiao Yan
- School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 People's Republic of China
| |
Collapse
|
5
|
Vojáčková P, Chalupa D, Prieboj J, Nečas M, Švenda J. Enantioselective Conjugate Additions of 2-Alkoxycarbonyl-3(2H)-furanones. Org Lett 2018; 20:7085-7089. [DOI: 10.1021/acs.orglett.8b03039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Petra Vojáčková
- Department of Chemistry, Masaryk University, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, 656 91, Czech Republic
| | - David Chalupa
- Department of Chemistry, Masaryk University, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, 656 91, Czech Republic
| | - Jozef Prieboj
- Department of Chemistry, Masaryk University, Brno, 625 00, Czech Republic
| | - Marek Nečas
- Department of Chemistry, Masaryk University, Brno, 625 00, Czech Republic
| | - Jakub Švenda
- Department of Chemistry, Masaryk University, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, 656 91, Czech Republic
| |
Collapse
|
6
|
Sivamuthuraman K, Kesavan V. Stereodivergent Synthesis of 3-Aminooxindole Derivatives Containing Vicinal Tetrasubstituted Stereocenters via the Mannich Reaction. J Org Chem 2018; 83:8936-8952. [PMID: 29966425 DOI: 10.1021/acs.joc.8b01020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly enantioselective stereodivergent synthesis of 3-aminooxindole derivatives was accomplished via asymmetric Mannich reaction between 2-substituted benzofuran-3-one and isatin-derived ketimines. Both anti and syn-selective chiral 3,3-disubstituted amino oxindoles bearing two adjacent tetrasubstituted stereogenic centers with high yield and excellent enantioselectivities were obtained using readily available cinchona-alkaloid derived organocatalysts. The control experiment revealed that oxygen atom present in the benzofuran ring played an important role in switching diastereodivergence. The obtained Mannich product was further transformed into a biologically important 2,3-dihydrobenzofuran derivative having three contiguous stereocenters with no loss of enantioselectivity.
Collapse
Affiliation(s)
- Koilpitchai Sivamuthuraman
- Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Venkitasamy Kesavan
- Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
7
|
Alonso DA, Baeza A, Chinchilla R, Gómez C, Guillena G, Pastor IM, Ramón DJ. Recent Advances in Asymmetric Organocatalyzed Conjugate Additions to Nitroalkenes. Molecules 2017; 22:E895. [PMID: 28555049 PMCID: PMC6152790 DOI: 10.3390/molecules22060895] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022] Open
Abstract
The asymmetric conjugate addition of carbon and heteroatom nucleophiles to nitroalkenes is a very interesting tool for the construction of highly functionalized synthetic building blocks. Thanks to the rapid development of asymmetric organocatalysis, significant progress has been made during the last years in achieving efficiently this process, concerning chiral organocatalysts, substrates and reaction conditions. This review surveys the advances in asymmetric organocatalytic conjugate addition reactions to α,β-unsaturated nitroalkenes developed between 2013 and early 2017.
Collapse
Affiliation(s)
- Diego A Alonso
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080 Alicante, Spain.
| | - Alejandro Baeza
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080 Alicante, Spain.
| | - Rafael Chinchilla
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080 Alicante, Spain.
| | - Cecilia Gómez
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080 Alicante, Spain.
| | - Gabriela Guillena
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080 Alicante, Spain.
| | - Isidro M Pastor
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080 Alicante, Spain.
| | - Diego J Ramón
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080 Alicante, Spain.
| |
Collapse
|
8
|
Zhang ZF, Zhu DX, Chen WW, Xu B, Xu MH. Enantioselective Synthesis of gem-Diaryl Benzofuran-3(2H)-ones via One-Pot Asymmetric Rhodium/Palladium Relay Catalysis. Org Lett 2017; 19:2726-2729. [DOI: 10.1021/acs.orglett.7b01070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zong-Feng Zhang
- Department
of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dong-Xing Zhu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Wen Chen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Xu
- Department
of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Ming-Hua Xu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Li S, Zhang E, Feng J, Li X. An enantioselective conjugate addition reaction of 3-substituted benzothiophen-2-ones and 2-phthalimidoacrylates. Org Chem Front 2017. [DOI: 10.1039/c7qo00531h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly enantioselective conjugate addition reaction of 3-substituted benzothiophen-2-ones to 2-phthalimidoacrylates has been developed using a bifunctional tertiary-amine thiourea catalyst.
Collapse
Affiliation(s)
- Shoulei Li
- State Key Laboratory of Elemento-organic Chemistry
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Enge Zhang
- State Key Laboratory of Elemento-organic Chemistry
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Junjun Feng
- State Key Laboratory of Elemento-organic Chemistry
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| | - Xin Li
- State Key Laboratory of Elemento-organic Chemistry
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
| |
Collapse
|
10
|
Martínez JI, Uria U, Muñiz M, Reyes E, Carrillo L, Vicario JL. Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti-selectivity control using catalysts with the same absolute backbone chirality. Beilstein J Org Chem 2015; 11:2577-83. [PMID: 26734103 PMCID: PMC4685793 DOI: 10.3762/bjoc.11.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/02/2015] [Indexed: 11/23/2022] Open
Abstract
The asymmetric and catalytic Michael reaction between α-nitroesters and nitroalkenes has been studied in the presence of two bifunctional catalysts both containing the same absolute chirality at the carbon backbone. The reaction performed in similar conditions allows us to control the syn or anti selectivity of the Michael adduct obtaining good yields and high enantiocontrol in all cases.
Collapse
Affiliation(s)
- Jose I Martínez
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Uxue Uria
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Maria Muñiz
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Efraím Reyes
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Luisa Carrillo
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Jose L Vicario
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|