1
|
Das PK, Silverman SK. Sequence-Dependent Acylation of Peptide Lysine Residues by DNAzymes. Chembiochem 2024; 25:e202400578. [PMID: 39239825 PMCID: PMC11543514 DOI: 10.1002/cbic.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
Methods for modifying intact peptides are useful but can be unselective with regard to amino acid position and sequence context. In this work, we used in vitro selection to identify DNAzymes that acylate a Lys residue of a short peptide in sequence-dependent fashion. The DNAzymes do not acylate Lys when placed at other residues in the peptide, and the acylation activity depends on the Lys sequence context. A high acylation yield is observed on the preparative nanomole scale. These findings are promising for further development of DNAzymes for broader application to top-down Lys acylation of peptide and protein substrates.
Collapse
Affiliation(s)
- Prakriti K Das
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, United States
| |
Collapse
|
2
|
Hong ZZ, Yu RR, Zhang X, Webb AM, Burge NL, Poirier MG, Ottesen JJ. Development of Convergent Hybrid Phase Ligation for Efficient and Convenient Total Synthesis of Proteins. Pept Sci (Hoboken) 2023; 115:e24323. [PMID: 37692919 PMCID: PMC10488053 DOI: 10.1002/pep2.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023]
Abstract
Simple and efficient total synthesis of homogeneous and chemically modified protein samples remains a significant challenge. Here, we report development of a convergent hybrid phase native chemical ligation (CHP-NCL) strategy for facile preparation of proteins. In this strategy, proteins are split into ~100-residue blocks, and each block is assembled on solid support from synthetically accessible peptide fragments before ligated together into full-length protein in solution. With the new method, we increase the yield of CENP-A synthesis by 2.5-fold compared to the previous hybrid phase ligation approach. We further extend the new strategy to the total chemical synthesis of 212-residue linker histone H1.2 in unmodified, phosphorylated, and citrullinated forms, each from eight peptide segments with only one single purification. We demonstrate that fully synthetic H1.2 replicates the binding interactions of linker histones to intact mononucleosomes, as a proxy for the essential function of linker histones in the formation and regulation of higher order chromatin structure.
Collapse
Affiliation(s)
- Ziyong Z. Hong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Ruixuan R. Yu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Xiaoyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Allison M. Webb
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Nathaniel L. Burge
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Michael G. Poirier
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
- Department of Physics, Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Jennifer J. Ottesen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
3
|
Cardella D, Tsai YH, Luk LYP. Towards the use of an amino acid cleavable linker for solid-phase chemical synthesis of peptides and proteins. Org Biomol Chem 2023; 21:966-969. [PMID: 36628630 PMCID: PMC9890637 DOI: 10.1039/d2ob02198f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis of proteins by solid-phase chemical ligation (SPCL) suffers from the paucity of linkers that can be cleaved under mild conditions. Here, we deployed a spontaneous nickel-assisted cleavage (SNAC) tag, known to undergo spontaneous cleavage in the presence of nickel(II), as a linker for C-to-N SPCL.
Collapse
Affiliation(s)
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhen 518132China
| | | |
Collapse
|
4
|
Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022; 48:575-596. [PMID: 35080058 DOI: 10.1002/biof.1822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
With the rapid development of molecular biology and biochemical technology, great progress has been made in the study of peptides. Peptides are easy to digest and absorb, with lowering of blood pressure and cholesterol, improving immunity, regulating hormones, antibacterial, and antiviral effects. Peptides also have physiological regulation and biological metabolism functions with applications in the fields of feed production and biomedical research. In the future, the research focus of bioactive peptides will focus on their efficient preparation and application. This article introduces a comprehensive review of the types, synthesis, functionalization, and bio-related applications of bioactive peptides. For this aim, we introduced in detail various biopeptides and then presented the production methods of bioactive peptides, such as enzymatic synthesis, microbial fermentation, chemical synthesis, and others. The applications of bioactive peptides for anticancers, immune therapy, antibacterial, and other applications have been introduced and discussed. And discussed the development prospects of biologically active peptides.
Collapse
Affiliation(s)
- Linlin Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Burge N, Thuma JL, Hong ZZ, Jamison KB, Ottesen JJ, Poirier MG. H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes. Biochemistry 2022; 61:625-638. [PMID: 35377618 PMCID: PMC9022651 DOI: 10.1021/acs.biochem.2c00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Indexed: 12/25/2022]
Abstract
The linker histone H1 is a highly prevalent protein that compacts chromatin and regulates DNA accessibility and transcription. However, the mechanisms behind H1 regulation of transcription factor (TF) binding within nucleosomes are not well understood. Using in vitro fluorescence assays, we positioned fluorophores throughout human H1 and the nucleosome, then monitored the distance changes between H1 and the histone octamer, H1 and nucleosomal DNA, or nucleosomal DNA and the histone octamer to monitor the H1 movement during TF binding. We found that H1 remains bound to the nucleosome dyad, while the C terminal domain (CTD) releases the linker DNA during nucleosome partial unwrapping and TF binding. In addition, mutational studies revealed that a small 16 amino acid region at the beginning of the H1 CTD is largely responsible for altering nucleosome wrapping and regulating TF binding within nucleosomes. We then investigated physiologically relevant post-translational modifications (PTMs) in human H1 by preparing fully synthetic H1 using convergent hybrid phase native chemical ligation. Both individual PTMs and combinations of phosphorylation and citrullination of H1 had no detectable influence on nucleosome binding and nucleosome wrapping, and had only a minor impact on H1 regulation of TF occupancy within nucleosomes. This suggests that these H1 PTMs function by other mechanisms. Our results highlight the importance of the H1 CTD, in particular, the first 16 amino acids, in regulating nucleosome linker DNA dynamics and TF binding within the nucleosome.
Collapse
Affiliation(s)
- Nathaniel
L. Burge
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jenna L. Thuma
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ziyong Z. Hong
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Kevin B. Jamison
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jennifer J. Ottesen
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Abboud SA, Amoura M, Madinier J, Renoux B, Papot S, Piller V, Aucagne V. Enzyme‐Cleavable Linkers for Protein Chemical Synthesis through Solid‐Phase Ligations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Skander A. Abboud
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Jean‐Baptiste Madinier
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers UMR-CNRS 7285 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers UMR-CNRS 7285 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Véronique Piller
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
7
|
Abboud SA, Amoura M, Madinier JB, Renoux B, Papot S, Piller V, Aucagne V. Enzyme-Cleavable Linkers for Protein Chemical Synthesis through Solid-Phase Ligations. Angew Chem Int Ed Engl 2021; 60:18612-18618. [PMID: 34097786 DOI: 10.1002/anie.202103768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/26/2022]
Abstract
The total synthesis of long proteins requires the assembly of multiple fragments through successive ligations. The need for intermediate purification steps is a strong limitation, particularly in terms of overall yield. One solution to this problem would be solid-supported chemical ligation (SPCL), for which a first peptide segment must be immobilized on a SPCL-compatible solid support through a linker that can be cleaved under very mild conditions to release the assembled protein. The cleavage of SPCL linkers has previously required chemical conditions sometimes incompatible with sensitive protein targets. Herein, we describe an alternative enzymatic approach to trigger cleavage under extremely mild and selective conditions. Optimization of the linker structure and use of a small enzyme able to diffuse into the solid support were key to the success of the strategy. We demonstrated its utility by the assembly of three peptide segments on the basis of native chemical ligation to afford a 15 kDa polypeptide.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Jean-Baptiste Madinier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR-CNRS 7285, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR-CNRS 7285, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Véronique Piller
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| |
Collapse
|
8
|
Yao T, Przybyla JJ, Yeh P, Woodard AM, Nilsson HJ, Brandsen BM, Silverman SK. DNAzymes for amine and peptide lysine acylation. Org Biomol Chem 2021; 19:171-181. [PMID: 33150349 PMCID: PMC7790989 DOI: 10.1039/d0ob02015j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNAzymes were previously identified by in vitro selection for a variety of chemical reactions, including several biologically relevant peptide modifications. However, finding DNAzymes for peptide lysine acylation is a substantial challenge. By using suitably reactive aryl ester acyl donors as the electrophiles, here we used in vitro selection to identify DNAzymes that acylate amines, including lysine side chains of DNA-anchored peptides. Some of the DNAzymes can transfer a small glutaryl group to an amino group. These results expand the scope of DNAzyme catalysis and suggest the future broader applicability of DNAzymes for sequence-selective lysine acylation of peptide and protein substrates.
Collapse
Affiliation(s)
- Tianjiong Yao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Vamisetti GB, Satish G, Sulkshane P, Mann G, Glickman MH, Brik A. On-Demand Detachment of Succinimides on Cysteine to Facilitate (Semi)Synthesis of Challenging Proteins. J Am Chem Soc 2020; 142:19558-19569. [PMID: 33136379 PMCID: PMC7705887 DOI: 10.1021/jacs.0c07663] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
maleimide group is a widely used reagent for bioconjugation
of peptides, proteins, and oligonucleotides employing Michael addition
and Diels–Alder cycloaddition reactions. However, the utility
of this functionality in chemical synthesis of peptides and proteins
remains unexplored. We report, for the first time that PdII complexes can mediate the efficient removal of various succinimide
derivatives in aqueous conditions. Succinimide removal by PdII was applied for the synthesis of two ubiquitin activity-based probes
(Ub-ABPs) employing solid phase chemical ligation (SPCL). SPCL was
achieved through a sequential three segment ligation on a polymer
support via a maleimide anchor. The obtained probes successfully formed
the expected covalent complexes with deubiquitinating enzymes (DUBs)
USP2 and USP7, highlighting the use of our new method for efficient
preparation of unique synthetic proteins. Importantly, we demonstrate
the advantages of our newly developed method for the protection and
deprotection of native cysteine with a succinimide group in a peptide
fragment derived from thioredoxin-1 (Trx-1) obtained via intein based
expression to enable ligation/desulfurization and subsequent disulfide
bond formation in a one-pot process.
Collapse
Affiliation(s)
- Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
10
|
Strategies and open questions in solid-phase protein chemical synthesis. Curr Opin Chem Biol 2020; 58:1-9. [DOI: 10.1016/j.cbpa.2020.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
|
11
|
Ferrer‐Gago FJ, Koh LQ. Synthesis of
C‐terminal
glycine‐rich
o
‐aminoanilide
peptides without overacylation for use in
benzotriazole‐mediated
native chemical ligation. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fernando J. Ferrer‐Gago
- p53 Laboratory Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove #06‐04/05 Neuro/Immunos 138648 Singapore
| | - Li Quan Koh
- p53 Laboratory Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove #06‐04/05 Neuro/Immunos 138648 Singapore
| |
Collapse
|
12
|
Bouchenna J, Sénéchal M, Drobecq H, Vicogne J, Melnyk O. Total Chemical Synthesis of All SUMO-2/3 Dimer Combinations. Bioconjug Chem 2019; 30:2967-2973. [PMID: 31702897 DOI: 10.1021/acs.bioconjchem.9b00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One hallmark of protein chemical synthesis is its capacity to access proteins that living systems can hardly produce. This is typically the case for proteins harboring post-translational modifications such as ubiquitin or ubiquitin-like modifiers. Various methods have been developed for accessing polyubiquitin conjugates by semi- or total synthesis. Comparatively, the preparation of small-ubiquitin-like modifier (SUMO) conjugates, and more particularly of polySUMO scaffolds, is much less developed. We describe hereinafter a synthetic strategy for accessing all SUMO-2/3 dimer combinations.
Collapse
Affiliation(s)
- Jennifer Bouchenna
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille , F-59000 Lille , France
| | - Magalie Sénéchal
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille , F-59000 Lille , France
| | - Hervé Drobecq
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille , F-59000 Lille , France
| | - Jérôme Vicogne
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille , F-59000 Lille , France
| | - Oleg Melnyk
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille , F-59000 Lille , France
| |
Collapse
|
13
|
Bouchenna J, Sénéchal M, Drobecq H, Stankovic-Valentin N, Vicogne J, Melnyk O. The Role of the Conserved SUMO-2/3 Cysteine Residue on Domain Structure Investigated Using Protein Chemical Synthesis. Bioconjug Chem 2019; 30:2684-2696. [PMID: 31532181 DOI: 10.1021/acs.bioconjchem.9b00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
While the semi or total synthesis of ubiquitin or polyubiquitin conjugates has attracted a lot of attention the past decade, the preparation of small ubiquitin-like modifier (SUMO) conjugates is much less developed. We describe hereinafter some important molecular features to consider when preparing SUMO-2/3 conjugates by chemical synthesis using the native chemical ligation and extended methods. In particular, we clarify the role of the conserved cysteine residue on SUMO-2/3 domain stability and properties. Our data reveal that SUMO-2 and -3 proteins behave differently from the Cys → Ala modification with SUMO-2 being less impacted than SUMO-3, likely due to a stabilizing interaction occurring in SUMO-2 between its tail and the SUMO core domain. While the Cys → Ala modification has no effect on the enzyme-catalyzed conjugation, it shows a deleterious effect on the enzyme-catalyzed deconjugation process, especially with the SUMO-3 conjugate. Whereas it is often stated that SUMO-2 and SUMO-3 are structurally and functionally indistinguishable, here we show that these proteins have specific structural and biochemical properties. This information is important to consider when designing and preparing SUMO-2/3 conjugates, and should help in making progress in the understanding of the specific role of SUMO-2 and/or SUMO-3 modifications on protein structure and function.
Collapse
Affiliation(s)
- Jennifer Bouchenna
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| | - Magalie Sénéchal
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| | - Hervé Drobecq
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) , DKFZ - ZMBH Alliance, 69120 , Heidelberg , Germany
| | - Jérôme Vicogne
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| | - Oleg Melnyk
- University of Lille , CNRS, Institut Pasteur de Lille, INSERM U1019, UMR CNRS 8204, Centre d'Immunité et d'Infection de Lille, F-59000 Lille , France
| |
Collapse
|
14
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Asahina Y, Kawakami T, Hojo H. Glycopeptide Synthesis Based on a TFA-Labile Protection Strategy and One-Pot Four-Segment Ligation for the Synthesis of O-Glycosylated Histone H2A. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuya Asahina
- Institute for Protein Research; Osaka University; Yamadaoka 3-2, Suita Osaka 565-0871 Japan
| | - Toru Kawakami
- Institute for Protein Research; Osaka University; Yamadaoka 3-2, Suita Osaka 565-0871 Japan
| | - Hironobu Hojo
- Institute for Protein Research; Osaka University; Yamadaoka 3-2, Suita Osaka 565-0871 Japan
| |
Collapse
|
16
|
Sueoka T, Koyama K, Hayashi G, Okamoto A. Chemistry-Driven Epigenetic Investigation of Histone and DNA Modifications. CHEM REC 2018; 18:1727-1744. [PMID: 30070422 DOI: 10.1002/tcr.201800040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/22/2018] [Indexed: 12/26/2022]
Abstract
In the regulation processes of gene expression, genomic DNA and nuclear proteins, including histone proteins, cooperate with each other, leading to the distinctive functions of eukaryotic cells such as pluripotency and differentiation. Chemical modification of histone proteins and DNA has been revealed as one of the major driving forces in the complicated epigenetic regulation system. However, understanding of the precise molecular mechanisms is still limited. To address this issue, researchers have proposed both biological and chemical strategies for the preparation and detection of modified proteins and nucleic acids. In this review, we focus on chemical methods around the field of epigenetics. Chemical protein synthesis has enabled the preparation of site-specifically modified histones and their successful application to various in vitro assays, which have emphasized the significance of posttranslational modifications of interest. We also review the modification-specific chemical reactions against synthetic and genomic DNA, which enabled discrimination of several modified bases at single-base resolution.
Collapse
Affiliation(s)
- Takuma Sueoka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenta Koyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
17
|
Guidotti N, Lechner CC, Fierz B. Controlling the supramolecular assembly of nucleosomes asymmetrically modified on H4. Chem Commun (Camb) 2018; 53:10267-10270. [PMID: 28862273 DOI: 10.1039/c7cc06180c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In stem cells, H4 proteins carrying different modifications coexist within single nucleosomes. For functional studies, we report the synthesis of such asymmetric nucleosomes. Asymmetry is achieved by transiently crosslinking H4 by a traceless, protease-removable tag introduced via an isopeptide linkage. These nucleosomes are used to study Set8 activity, a key methyltransferase.
Collapse
Affiliation(s)
- Nora Guidotti
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
18
|
Qi YK, Ai HS, Li YM, Yan B. Total Chemical Synthesis of Modified Histones. Front Chem 2018; 6:19. [PMID: 29473034 PMCID: PMC5810247 DOI: 10.3389/fchem.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 01/04/2023] Open
Abstract
In the post-genome era, epigenetics has received increasing attentions in recent years. The post-translational modifications (PTMs) of four core histones play central roles in epigenetic regulation of eukaryotic genome by either directly altering the biophysical properties of nucleosomes or by recruiting other effector proteins. In order to study the biological functions and structural mechanisms of these histone PTMs, an obligatory step is to prepare a sufficient amount of homogeneously modified histones. This task cannot be fully accomplished either by recombinant technology or enzymatic modification. In this context, synthetic chemists have developed novel protein synthetic tools and state-of-the-art chemical ligation strategies for the preparation of homologous modified histones. In this review, we summarize the recent advances in the preparation of modified histones, focusing on the total chemical synthesis strategies. The importance and potential of synthetic chemistry for the study of histone code will be also discussed.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hua-Song Ai
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yi-Ming Li
- Department of Pharmacy, School of Biological and Medical Engineering, Hefei University of Technology, Hefei, China
| | - Baihui Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Yan B, Ye L, Xu W, Liu L. Recent advances in racemic protein crystallography. Bioorg Med Chem 2017; 25:4953-4965. [DOI: 10.1016/j.bmc.2017.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
20
|
Sueoka T, Hayashi G, Okamoto A. Regulation of the Stability of the Histone H2A–H2B Dimer by H2A Tyr57 Phosphorylation. Biochemistry 2017; 56:4767-4772. [DOI: 10.1021/acs.biochem.7b00504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Takuma Sueoka
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Gosuke Hayashi
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
21
|
Schwebach CL, Agrawal R, Lindert S, Kudryashova E, Kudryashov DS. The Roles of Actin-Binding Domains 1 and 2 in the Calcium-Dependent Regulation of Actin Filament Bundling by Human Plastins. J Mol Biol 2017; 429:2490-2508. [PMID: 28694070 DOI: 10.1016/j.jmb.2017.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/04/2023]
Abstract
The actin cytoskeleton is a complex network controlled by a vast array of intricately regulated actin-binding proteins. Human plastins (PLS1, PLS2, and PLS3) are evolutionary conserved proteins that non-covalently crosslink actin filaments into tight bundles. Through stabilization of such bundles, plastins contribute, in an isoform-specific manner, to the formation of kidney and intestinal microvilli, inner ear stereocilia, immune synapses, endocytic patches, adhesion contacts, and invadosomes of immune and cancer cells. All plastins comprise an N-terminal Ca2+-binding regulatory headpiece domain followed by two actin-binding domains (ABD1 and ABD2). Actin bundling occurs due to simultaneous binding of both ABDs to separate actin filaments. Bundling is negatively regulated by Ca2+, but the mechanism of this inhibition remains unknown. In this study, we found that the bundling abilities of PLS1 and PLS2 were similarly sensitive to Ca2+ (pCa50 ~6.4), whereas PLS3 was less sensitive (pCa50 ~5.9). At the same time, all three isoforms bound to F-actin in a Ca2+-independent manner, suggesting that binding of only one of the ABDs is inhibited by Ca2+. Using limited proteolysis and mass spectrometry, we found that in the presence of Ca2+ the EF-hands of human plastins bound to an immediately adjacent sequence homologous to canonical calmodulin-binding peptides. Furthermore, our data from differential centrifugation, Förster resonance energy transfer, native electrophoresis, and chemical crosslinking suggest that Ca2+ does not affect ABD1 but inhibits the ability of ABD2 to interact with actin. A structural mechanism of signal transmission from Ca2+ to ABD2 through EF-hands remains to be established.
Collapse
Affiliation(s)
- Christopher L Schwebach
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richa Agrawal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Bui M, Pitman M, Nuccio A, Roque S, Donlin-Asp PG, Nita-Lazar A, Papoian GA, Dalal Y. Internal modifications in the CENP-A nucleosome modulate centromeric dynamics. Epigenetics Chromatin 2017; 10:17. [PMID: 28396698 PMCID: PMC5379712 DOI: 10.1186/s13072-017-0124-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background Posttranslational modifications of core histones are correlated with changes in transcriptional status, chromatin fiber folding, and nucleosome dynamics. However, within the centromere-specific histone H3 variant CENP-A, few modifications have been reported, and their functions remain largely unexplored. In this multidisciplinary report, we utilize in silico computational and in vivo approaches to dissect lysine 124 of human CENP-A, which was previously reported to be acetylated in advance of replication. Results Computational modeling demonstrates that acetylation of K124 causes tightening of the histone core and hinders accessibility to its C-terminus, which in turn diminishes CENP-C binding. Additionally, CENP-A K124ac/H4 K79ac containing nucleosomes are prone to DNA sliding. In vivo experiments using a CENP-A acetyl or unacetylatable mimic (K124Q and K124A, respectively) reveal alterations in CENP-C levels and a modest increase in mitotic errors. Furthermore, mutation of K124 results in alterations in centromeric replication timing. Purification of native CENP-A proteins followed by mass spectrometry analysis reveals that while CENP-A K124 is acetylated at G1/S, it switches to monomethylation during early S and mid-S phases. Finally, we provide evidence implicating the histone acetyltransferase (HAT) p300 in this cycle. Conclusions Taken together, our data suggest that cyclical modifications within the CENP-A nucleosome contribute to the binding of key kinetochore proteins, the integrity of mitosis, and centromeric replication. These data support the paradigm that modifications in histone variants can influence key biological processes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0124-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minh Bui
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA
| | - Mary Pitman
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA.,Department of Biophysics, University of Maryland, College Park, MD USA
| | - Arthur Nuccio
- Cellular Networks Proteomics Unit, Laboratory of Systems Biology, NIAID, NIH, Bethesda, MD 20892 USA
| | - Serene Roque
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA
| | - Paul Gregory Donlin-Asp
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA.,Department of Cell Biology, Emory University, Atlanta, GA USA
| | - Aleksandra Nita-Lazar
- Cellular Networks Proteomics Unit, Laboratory of Systems Biology, NIAID, NIH, Bethesda, MD 20892 USA
| | - Garegin A Papoian
- Department of Biophysics, University of Maryland, College Park, MD USA
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
23
|
Asahina Y, Kawakami T, Hojo H. One-pot native chemical ligation by combination of two orthogonal thioester precursors. Chem Commun (Camb) 2017; 53:2114-2117. [DOI: 10.1039/c6cc10243c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a one-pot peptide ligation method using two orthogonal thioester precursors and a protecting group for the ligation reaction between Asp and Cys.
Collapse
Affiliation(s)
- Yuya Asahina
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | - Toru Kawakami
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | - Hironobu Hojo
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| |
Collapse
|
24
|
Qi YK, He QQ, Ai HS, Guo J, Li JB. The convergent chemical synthesis of histone H3 protein for site-specific acetylation at Lys56 and ubiquitination at Lys122. Chem Commun (Camb) 2017; 53:4148-4151. [DOI: 10.1039/c7cc01721a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first total chemical synthesis of modified H3 bearing Lys56 acetylation and Lys122 ubiquitination.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Qiao-Qiao He
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Hua-Song Ai
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jing Guo
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jia-Bin Li
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
25
|
Li J, He Q, Liu Y, Liu S, Tang S, Li C, Sun D, Li X, Zhou M, Zhu P, Bi G, Zhou Z, Zheng JS, Tian C. Chemical Synthesis of K34-Ubiquitylated H2B for Nucleosome Reconstitution and Single-Particle Cryo-Electron Microscopy Structural Analysis. Chembiochem 2016; 18:176-180. [PMID: 27976477 DOI: 10.1002/cbic.201600551] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (e.g., ubiquitylation) of histones play important roles in dynamic regulation of chromatin. Histone ubiquitylation has been speculated to directly influence the structure and dynamics of nucleosomes. However, structural information for ubiquitylated nucleosomes is still lacking. Here we report an alternative strategy for total chemical synthesis of homogenous histone H2B-K34-ubiquitylation (H2B-K34Ub) by using acid-cleavable auxiliary-mediated ligation of peptide hydrazides for site-specific ubiquitylation. Synthetic H2B-K34Ub was efficiently incorporated into nucleosomes and further used for single-particle cryo-electron microscopy (cryo-EM) imaging. The cryo-EM structure of the nucleosome containing H2B-K34Ub suggests that two flexible ubiquitin domains protrude between the DNA chains of the nucleosomes. The DNA chains around the H2B-K34 sites shift and provide more space for ubiquitin to protrude. These analyses indicated local and slight structural influences on the nucleosome with ubiquitylation at the H2B-K34 site.
Collapse
Affiliation(s)
- Jiabin Li
- Key Laboratory of Bioorganic Phosphorus Chemistry, Chemical Biology, Ministry of Education), Department of Chemistry and School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China
| | - Qiaoqiao He
- Key Laboratory of Bioorganic Phosphorus Chemistry, Chemical Biology, Ministry of Education), Department of Chemistry and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuntao Liu
- Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China
| | - Sanling Liu
- Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China
| | - Shan Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry, Chemical Biology, Ministry of Education), Department of Chemistry and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chengmin Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Demeng Sun
- Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China
| | - Xiaorun Li
- Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China
| | - Min Zhou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoqiang Bi
- Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China
| | - Zhenghong Zhou
- Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China.,Department of Microbiology, Immunology and Molecular Genetics and, California NanoSystems Systems, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ji-Shen Zheng
- Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China
| | - Changlin Tian
- Hefei National Laboratory of Physical Sciences at MicroScale and, School of Life Sciences, University of Science and Technology of China and, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027, China
| |
Collapse
|
26
|
He Q, Li J, Qi Y, Wang Z, Huang Y, Liu L. Chemical synthesis of histone H2A with methylation at Gln104. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0386-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Maity SK, Mann G, Jbara M, Laps S, Kamnesky G, Brik A. Palladium-Assisted Removal of a Solubilizing Tag from a Cys Side Chain To Facilitate Peptide and Protein Synthesis. Org Lett 2016; 18:3026-9. [PMID: 27268382 DOI: 10.1021/acs.orglett.6b01442] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible attachment of solubilizing tags to hydrophobic peptides to facilitate their purification and ligation is an essential yet challenging task in chemical protein synthesis. The efficient palladium-assisted removal of the solubilizing tag linked to the Cys side chain is reported. The strategy was applied for the efficient preparation of histone protein H4 from two fragments via one-pot operation of ligation, removal of the solubilizing tag, and desulfurization.
Collapse
Affiliation(s)
- Suman Kumar Maity
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Muhammad Jbara
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Shay Laps
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| |
Collapse
|