1
|
Kovács L. From Peptide Nucleic Acids to Supramolecular Structures of Nucleic Acid Derivatives. CHEM REC 2023; 23:e202200203. [PMID: 36251934 DOI: 10.1002/tcr.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Indexed: 01/24/2023]
Abstract
Nucleic acids play a pivotal role in life processes. The endeavours to shed light on the essential properties of these intriguing building blocks led us to the synthesis of different analogues and the investigation of their properties. First various peptide nucleic acid monomers and oligomers have been synthesized, using an Fmoc/acyl protecting group strategy, and their properties studied. The serendipitous discovery of a side reaction of coupling agents led us to the elaboration of a peptide sequencing method. The capricious behaviour of guanine derivatives spurred the determination of their substitution pattern using 13 C, 15 N NMR, and mass spectrometric methods. The properties of guanines initiated the logical transition to the study of supramolecular systems composed of purine analogues. Thus, xanthine and uracil derivatives have been obtained and their supramolecular self-assembly properties scrutinized in gas, solid, and liquid states and at solid-liquid interfaces.
Collapse
Affiliation(s)
- Lajos Kovács
- University of Szeged, Albert Szent-Györgyi Medical School, Department of Medicinal Chemistry, H-6720, Szeged, Dóm tér 8, Hungary
| |
Collapse
|
2
|
Romanucci V, Oliva R, Petraccone L, Claes S, Schols D, Zarrelli A, Di Fabio G. Synthesis of new riboflavin modified ODNs: Effect of riboflavin moiety on the G-quadruplex arrangement and stability. Bioorg Chem 2020; 104:104213. [PMID: 32919132 DOI: 10.1016/j.bioorg.2020.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
In the panorama of modified G-quadruplexes (G4s) with interesting proprieties, here, it has been reported the synthesis of new modified d(TGGGAG) sequences forming G-quadruplexes, with the insertion of a riboflavin unit (Rf, vitamin B2). Exploiting the flavin similarity with the hydrogen bond pattern of guanine and aiming at mimic a typical nucleoside scaffold, the synthesis of the riboflavin building block 3 it has been efficiently carried out. The effect of insertion of riboflavin mimic nucleoside on the G-quadruplex properties has been here, for the first time investigated. A biophysical characterization of Rf-modified sequences (A-D) has been carried out by circular dichroism (CD), fluorescence spectroscopy, differential scanning calorimetry (DSC) and native gel electrophoresis. CD and electrophoresis data have suggested that Rf-modified sequences are able to form parallel tetramolecular G4 structures similar to that of the unmodified sequence. Analysis of the DSC thermograms has revealed that all modified G-quadruplexes have a higher thermal stability compared with the natural sequence, particularly the stabilisation is higher when the Rf residue is introduced at the 3'-end. Further, DSC analysis has revealed that the Rf residues introduced at the 3'-end are able to form additional stabilising interactions, energetically almost comparable to the enthalpic contribution of a G-tetrad. Fluorescence measurement are consistent with this result showing that the Rf residues introduced at 3'-end are able to form stacking interactions with the adjacent bases within the G-quadruplex structure. The whole of data suggested that the introduction of Rf unit can stabilize G-quadruplex structures and can be a promising candidate for future theranostic applications.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy.
| | - Rosario Oliva
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy; Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
3
|
Paragi G, Kupihár Z, Endre G, Fonseca Guerra C, Kovács L. The evaluation of 5-amino- and 5-hydroxyuracil derivatives as potential quadruplex-forming agents. Org Biomol Chem 2018; 15:2174-2184. [PMID: 28054065 DOI: 10.1039/c6ob02574a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Substituted uracils (NH2 or OH groups in position 5) have been examined theoretically and experimentally as potential building blocks in quadruplex structures. Our high level Density Functional Theory (DFT) calculations showed that the tetramer formation and stacking energies for 5-substituted uracils are similar to the energies of purine-based xanthine (X) or guanine (G) structures. As tetrads of 5-substituted uracils cover almost exactly the same area as purine tetrads, mixed tetrads or quadruplex structures based on X or G and 5-substituted uracil motifs are possible. According to the calculations, 5-hydroxyuracil-based structures are the best candidates for experimental implementation which was corroborated by the existence of higher complexes in the mass spectra of 1-benzyl-5-hydroxyuracil. These pyrimidine-based molecules can be used as efficient building blocks in different applications including aptamers, bio-sensors or - taking into account the larger cavity in the central region of 5-hydroxyuracil structures - as an artificial ion channel.
Collapse
Affiliation(s)
- Gábor Paragi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam (VU), De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. and MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| | - Zoltán Kupihár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary.
| | - Gábor Endre
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary.
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam (VU), De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - Lajos Kovács
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary.
| |
Collapse
|
4
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|