1
|
Liu Y, Li N, Zhang Y, Wang Y. Diphenyl imidazole-based fluorescent chemosensor for Al 3+ and its Al 3+ complex toward water detection in food products. Food Chem 2023; 420:136138. [PMID: 37062081 DOI: 10.1016/j.foodchem.2023.136138] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
A sophisticated fluorescent chemosensor, 2-(4-nitrophenyl)-4,5-diphenyl-1H-imidazole (NPDI), was designed and synthesized through a one-step condensation reaction. NPDI exhibited a fluorescence enhancement response toward Al3+, accompanied by significant emission color change without interference from other tested metal ions. The binding stoichiometry and mechanism was corroborated using various techniques. The limit of detection (LOD) for Al3+ could reach 7.25 × 10-8 mol/L and the binding constant was found to be 1.47 × 105 L/mol. Furthermore, the in-situ formed NPDI·Al complex functioned a secondary chemosensor for water by quenching effect. The fluorescence quenching mechanism could be attributed to hydrogen bonding interaction of nitro substituent with water. The LOD was calculated to be 0.012 %, indicating NPDI·Al heightened sensitivity to water. Additionally, NPDI·Al complex was employed for the moisture detection in the surroundings. Finally, the practical application of NPDI·Al complex had been successfully used in the determination of water content in food products.
Collapse
Affiliation(s)
- Yucun Liu
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Ning Li
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yongling Zhang
- College of Information Technology, Jilin Normal University, Siping 136000, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Sun Q, Biswas A, Vijayan RSK, Craveur P, Forli S, Olson AJ, Castaner AE, Kirby KA, Sarafianos SG, Deng N, Levy R. Structure-based virtual screening workflow to identify antivirals targeting HIV-1 capsid. J Comput Aided Mol Des 2022; 36:193-203. [PMID: 35262811 PMCID: PMC8904208 DOI: 10.1007/s10822-022-00446-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules with calculated binding free energies between − 6 and − 12 kcal/mol. We performed thermal shift assays on these molecules to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to show measurable activity are discussed.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Avik Biswas
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - R S K Vijayan
- Institute for Applied Cancer Science, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pierrick Craveur
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andres Emanuelli Castaner
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY, 10038, USA.
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
3
|
Ludden MD, Taylor CGP, Tipping MB, Train JS, Williams NH, Dorrat JC, Tuck KL, Ward MD. Interaction of anions with the surface of a coordination cage in aqueous solution probed by their effect on a cage-catalysed Kemp elimination. Chem Sci 2021; 12:14781-14791. [PMID: 34820094 PMCID: PMC8597839 DOI: 10.1039/d1sc04887b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
An octanuclear M8L12 coordination cage catalyses the Kemp elimination reaction of 5-nitro-1,2-benzisoxazole (NBI) with hydroxide to give 2-cyano-4-nitrophenolate (CNP) as the product. In contrast to the previously-reported very efficient catalysis of the Kemp elimination reaction of unsubstituted benzisoxazole, which involves the substrate binding inside the cage cavity, the catalysed reaction of NBI with hydroxide is slower and occurs at the external surface of the cage, even though NBI can bind inside the cage cavity. The rate of the catalysed reaction is sensitive to the presence of added anions, which bind to the 16+ cage surface, displacing the hydroxide ions from around the cage which are essential reaction partners in the Kemp elimination. Thus we can observe different binding affinities of anions to the surface of the cationic cage in aqueous solution by the extent to which they displace hydroxide and thereby inhibit the catalysed Kemp elimination and slow down the appearance of CNP. For anions with a -1 charge the observed affinity order for binding to the cage surface is consistent with their ease of desolvation and their ordering in the Hofmeister series. With anions that are significantly basic (fluoride, hydrogen carbonate, carboxylates) the accumulation of the anion around the cage surface accelerates the Kemp elimination compared to the background reaction with hydroxide, which we ascribe to the ability of these anions to participate directly in the Kemp elimination. This work provides valuable mechanistic insights into the role of the cage in co-locating the substrate and the anionic reaction partners in a cage-catalysed reaction.
Collapse
Affiliation(s)
- Michael D Ludden
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Max B Tipping
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Jennifer S Train
- Department of Chemistry, University of Sheffield Sheffield S3 7HF UK
| | | | - Jack C Dorrat
- School of Chemistry, Monash University Melbourne VIC3800 Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Melbourne VIC3800 Australia
| | - Michael D Ward
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
4
|
Min J, Wang C, Wang L. A new method for detecting intramolecular H-bonds of aromatic amides based on the de-shielding effect of carbonyl groups on β-protons. Phys Chem Chem Phys 2021; 23:13284-13291. [PMID: 34095931 DOI: 10.1039/d1cp01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic amide foldamers with highly predictable conformations possess potential for application in the fields of stereoselective recognition, charge transport and catalysis, whose conformations are commonly limited by the intramolecular hydrogen bonding between amide groups and hydrogen-bonding receptors. Herein, on the basis of the de-shielding effect of carbonyl groups on β-protons, we develop a new method for detecting intramolecular hydrogen bonds of aromatic amide compounds. The solvent-related changes in the βH chemical shifts (Δ(δβH)) and NH chemical shifts (Δ(δNH)) of three kinds of amide compounds, which are frequently used as building blocks of aromatic amide foldamers, were recorded in chloroform, nitromethane, acetonitrile and DMSO. The Δ(δβH) method is found to be highly suitable for studying methoxy-benzamides and fluoro-benzamides in chloroform and DMSO. It is worth noting that a reference compound is not required for applying the Δ(δβH) method, which is an advantage over the Δ(δNH) method. In addition, we extend the Δ(δNH) method from methoxy-benzamides to pyridine-carboxamides and fluoro-benzamides in chloroform and DMSO, and propose that nitromethane and acetonitrile will be possible alternatives for the Δ(δNH) method if a test compound is not soluble in chloroform.
Collapse
Affiliation(s)
- Jing Min
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Liyan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Devereaux ZJ, He CC, Zhu Y, Roy HA, Cunningham NA, Hamlow LA, Berden G, Oomens J, Rodgers MT. Structures and Relative Glycosidic Bond Stabilities of Protonated 2'-Fluoro-Substituted Purine Nucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1521-1536. [PMID: 31111413 DOI: 10.1007/s13361-019-02222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The 2'-substituent is the primary distinguishing feature between DNA and RNA nucleosides. Modifications to this critical position, both naturally occurring and synthetic, can produce biologically valuable nucleoside analogues. The unique properties of fluorine make it particularly interesting and medically useful as a synthetic nucleoside modification. In this work, the effects of 2'-fluoro modification on the protonated gas-phase purine nucleosides are examined using complementary tandem mass spectrometry and computational methods. Direct comparisons are made with previous studies on related nucleosides. Infrared multiple photon dissociation action spectroscopy performed in both the fingerprint and hydrogen-stretching regions allows for the determination of the experimentally populated conformations. The populated conformers of protonated 2'-fluoro-2'-deoxyadenosine, [Adofl+H]+, and 2'-fluoro-2'-deoxyguanosine, [Guofl+H]+, are highly parallel to their respective canonical DNA and RNA counterparts. Both N3 and N1 protonation sites are accessed by [Adofl+H]+, stabilizing syn and anti nucleobase orientations, respectively. N7 protonation and anti nucleobase orientation dominates in [Guofl+H]+. Spectroscopically observable intramolecular hydrogen-bonding interactions with fluorine allow more definitive sugar puckering determinations than possible for the canonical systems. [Adofl+H]+ adopts C2'-endo sugar puckering, whereas [Guofl+H]+ adopts both C2'-endo and C3'-endo sugar puckering. Energy-resolved collision-induced dissociation experiments with survival yield analyses provide relative glycosidic bond stabilities. The N-glycosidic bond stabilities of the protonated 2'-fluoro-substituted purine nucleosides are found to exceed those of their canonical analogues. Further, the N-glycosidic bond stability is found to increase with increasing electronegativity of the 2'-substituent, i.e., H < OH < F. The N-glycosidic bond stability is also greater for the adenine nucleoside analogues than the guanine nucleoside analogues.
Collapse
Affiliation(s)
- Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - C C He
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA.
| |
Collapse
|
6
|
|
7
|
Influence of 2′-fluoro modification on glycosidic bond stabilities and gas-phase ion structures of protonated pyrimidine nucleosides. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Liu J, Xu L, Bai J, Du A, Wu B. Nitro- and fluoro-substituted tetraphenyl–phenyl grafted polysiloxanes as stationary phase for capillary gas chromatography. NEW J CHEM 2019. [DOI: 10.1039/c9nj01246j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work reports the synthesis of 2,5-di(4-nitrophenyl)-3,4-di(3,5-difluorophenyl)phenyl grafted polysiloxane (NDPP; containing 12.4% 2,5-di(4-nitrophenyl)-3,4-di(3,5-difluorophenyl)phenyl groups) for gas-chromatography (GC) separation.
Collapse
Affiliation(s)
- Jingchen Liu
- College of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Li Xu
- College of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Jianchun Bai
- College of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Aiqin Du
- College of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Bo Wu
- College of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
9
|
Wan Y, Zhang Z, Ma N, Bi J, Zhang G. Acylamino-Directed Specific Sequential Difunctionalizations of Anilides via Metal-Free Relay Reactions for p-Oxygen and o-Nitrogen Incorporation. J Org Chem 2018; 84:780-791. [DOI: 10.1021/acs.joc.8b02636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yameng Wan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingjing Bi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Lubos M, Dębowski D, Barcińska E, Meid A, Inkielewicz‐Stepniak I, Burster T, Rolka K. Inhibition of human constitutive 20S proteasome and 20S immunoproteasome with novel
N
‐terminally modified peptide aldehydes and their antitumor activity. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Lubos
- Department of Molecular Biochemistry, Faculty of ChemistryUniversity of Gdansk Gdansk Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of ChemistryUniversity of Gdansk Gdansk Poland
| | - Ewelina Barcińska
- Department of Medical ChemistryMedical University of Gdansk Gdansk Poland
| | - Annika Meid
- Department of Neurosurgery, Surgery CenterUlm University Medical Center Ulm Germany
| | | | - Timo Burster
- Department of BiologySchool of Science and Technology, Nazarbayev University Astana Kazakhstan Republic
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of ChemistryUniversity of Gdansk Gdansk Poland
| |
Collapse
|
11
|
Sun C, Cao S, Zhao P, Ma W, Guo Y, Zhao Y. The investigation on the N H reactivity of pentacoordinate spirophosphoranes by H/D exchange and NMR experiments. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Taylor R. The hydrogen bond between N—H or O—H and organic fluorine: favourable yes, competitive no. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2017; 73:474-488. [DOI: 10.1107/s2052520617005923] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
A study was made ofX—H...F—C interactions (X= N or O) in small-molecule crystal structures. It was primarily based on 6728 structures containingX—H and C—F and no atom heavier than chlorine. Of the 28 451 C—F moieties in these structures, 1051 interact withX—H groups. However, over three-quarters of these interactions are either the weaker components of bifurcated hydrogen bonds (so likely to be incidental contacts) or occur in structures where there is a clear insufficiency of good hydrogen-bond acceptors such as oxygen, nitrogen or halide. In structures where good acceptors are entirely absent, there is about a 2 in 3 chance that a givenX—H group will donate to fluorine. Viable alternatives areX—H...π hydrogen bonds (especially to electron-rich aromatics) and dihydrogen bonds. The average H...F distances ofX—H...F—C interactions are significantly shorter for CR3F (R= C or H) and Csp2—F acceptors than for CRF3. TheX—H...F angle distribution is consistent with a weak energetic preference for linearity, but that of H...F—C suggests a flat energy profile in the range 100–180°.X—H...F—C interactions are more likely when the acceptor is Csp2—F or CR3F, and when the donor is C—NH2. They also occur significantly more often in structures containing tertiary alcohols or solvent molecules, or withZ′ > 1,i.e.when there may be unusual packing problems. It is extremely rare to findX—H...F—C interactions in structures where there are several unused good acceptors. When it does happen, there is often a clear reason,e.g.awkwardly shaped molecules whose packing isolates a donor group from the good acceptors.
Collapse
|
13
|
Dryzhakov M, Moran J. Autocatalytic Friedel–Crafts Reactions of Tertiary Aliphatic Fluorides Initiated by B(C6F5)3·H2O. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00866] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marian Dryzhakov
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
14
|
Mocilac P, Osman IA, Gallagher JF. Short C–H⋯F interactions involving the 2,5-difluorobenzene group: understanding the role of fluorine in aggregation and complex C–F/C–H disorder in a 2 × 6 isomer grid. CrystEngComm 2016. [DOI: 10.1039/c6ce00795c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|