1
|
Shigeta A, Otani Y, Miyasa R, Makino Y, Kawamura I, Okitsu T, Wada A, Naito A. Photoreaction Pathways of Bacteriorhodopsin and Its D96N Mutant as Revealed by in Situ Photoirradiation Solid-State NMR. MEMBRANES 2022; 12:membranes12030279. [PMID: 35323754 PMCID: PMC8949607 DOI: 10.3390/membranes12030279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022]
Abstract
Bacteriorhodopsin (BR) functions as a light-driven proton pump that transitions between different states during the photocycle, such as all-trans (AT; BR568) and 13-cis, 15-syn (CS; BR548) state and K, L, M1, M2, N, and O intermediates. In this study, we used in situ photoirradiation 13C solid-state NMR to observe a variety of photo-intermediates and photoreaction pathways in [20-13C]retinal-WT-BR and its mutant [20-13C, 14-13C]retinal-D96N-BR. In WT-BR, the CS state converted to the CS* intermediate under photoirradiation with green light at −20 °C and consequently converted to the AT state in the dark. The AT state converted to the N intermediate under irradiation with green light. In D96N-BR, the CS state was converted to the CS* intermediate at −30 °C and consequently converted to the AT state. Simultaneously, the AT state converted to the M and L intermediates under green light illumination at −30 °C and subsequently converted to the AT state in the dark. The M intermediate was directly excited to the AT state by UV light illumination. We demonstrated that short-lived photo-intermediates could be observed in a stationary state using in situ photoirradiation solid-state NMR spectroscopy for WT-BR and D96N-BR, enabling insight into the light-driven proton pump activity of BR.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Yuto Otani
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Ryota Miyasa
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
- Correspondence: (I.K.); (A.N.)
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (T.O.); (A.W.)
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (T.O.); (A.W.)
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
- Correspondence: (I.K.); (A.N.)
| |
Collapse
|
2
|
Retinal Configuration of ppR Intermediates Revealed by Photoirradiation Solid-State NMR and DFT. Biophys J 2019; 115:72-83. [PMID: 29972813 DOI: 10.1016/j.bpj.2018.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Pharanois phoborhodopsin (ppR) from Natronomonas pharaonis is a transmembrane photoreceptor protein involved in negative phototaxis. Structural changes in ppR triggered by photoisomerization of the retinal chromophore are transmitted to its cognate transducer protein (pHtrII) through a cyclic photoreaction pathway involving several photointermediates. This pathway is called the photocycle. It is important to understand the detailed configurational changes of retinal during the photocycle. We previously observed one of the photointermediates (M-intermediates) by in situ photoirradiation solid-state NMR experiments. In this study, we further observed the 13C cross-polarization magic-angle-spinning NMR signals of late photointermediates such as O- and N'-intermediates by illumination with green light (520 nm). Under blue-light (365 nm) irradiation of the M-intermediates, 13C cross-polarization magic-angle-spinning NMR signals of 14- and 20-13C-labeled retinal in the O-intermediate appeared at 115.4 and 16.4 ppm and were assigned to the 13-trans, 15-syn configuration. The signals caused by the N'-intermediate appeared at 115.4 and 23.9 ppm and were assigned to the 13-cis configuration, and they were in an equilibrium state with the O-intermediate during thermal decay of the M-intermediates at -60°C. Thus, photoirradiation NMR studies revealed the photoreaction pathways from the M- to O-intermediates and the equilibrium state between the N'- and O-intermediate. Further, we evaluated the detailed retinal configurations in the O- and N'-intermediates by performing a density functional theory chemical shift calculation. The results showed that the N'-intermediate has a 63° twisted retinal state due to the 13-cis configuration. The retinal configurations of the O- and N'-intermediates were determined to be 13-trans, 15-syn, and 13-cis, respectively, based on the chemical shift values of [20-13C] and [14-13C] retinal obtained by photoirradiation solid-state NMR and density functional theory calculation.
Collapse
|
3
|
Naito A, Makino Y, Shigeta A, Kawamura I. Photoreaction pathways and photointermediates of retinal-binding photoreceptor proteins as revealed by in situ photoirradiation solid-state NMR spectroscopy. Biophys Rev 2019; 11:167-181. [PMID: 30811009 DOI: 10.1007/s12551-019-00501-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Photoirradiation solid-state NMR spectroscopy is a powerful means to study photoreceptor retinal-binding proteins by the detection of short-lived photointermediates to elucidate the photoreaction cycle and photoactivated structural changes. An in situ photoirradiation solid-state NMR apparatus has been developed for the irradiation of samples with extremely high efficiency to enable observation of photointermediates which are stationary trapped states. Such observation enables elucidation of the photoreaction processes of photoreceptor membrane proteins. Therefore, in situ photoirradiation is particularly useful study the photocycle of retinal-binding proteins such as sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) because functional photointermediates have relatively longer half-lives than other photointermediates. As a result, several photointermediates have been trapped as stationary state and their detailed structures and photoreaction cycles have been revealed using photoirradiation solid-state NMR spectroscopy at low temperature. Photoreaction intermediates of bacteriorhodopsin, which functions to provide light-driven proton pump activity, were difficult to trap because the half-lives of the photointermediates were shorter than those of sensory rhodopsin. Therefore, these photointermediates are trapped in a freeze-trapped state at a very low temperature and the NMR signals were observed using a combination of photoirradiation and dynamic nuclear polarization (DNP) experiments.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan.
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| |
Collapse
|
4
|
Kaufmann JCD, Krause BS, Grimm C, Ritter E, Hegemann P, Bartl FJ. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function. J Biol Chem 2017; 292:14205-14216. [PMID: 28659342 PMCID: PMC5572910 DOI: 10.1074/jbc.m117.779629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels widely used for activating selected cells in large cellular networks. ChR variants with a red-shifted absorption maximum, such as the modified Volvox carteri ChR1 red-activatable channelrhodopsin ("ReaChR," λmax = 527 nm), are of particular interest because longer wavelengths allow optical excitation of cells in deeper layers of organic tissue. In all ChRs investigated so far, proton transfer reactions and hydrogen bond changes are crucial for the formation of the ion-conducting pore and the selectivity for protons versus cations, such as Na+, K+, and Ca2+ (1). By using a combination of electrophysiological measurements and UV-visible and FTIR spectroscopy, we characterized the proton transfer events in the photocycle of ReaChR and describe their relevance for its function. 1) The central gate residue Glu130 (Glu90 in Chlamydomonas reinhardtii (Cr) ChR2) (i) undergoes a hydrogen bond change in D → K transition and (ii) deprotonates in K → M transition. Its negative charge in the open state is decisive for proton selectivity. 2) The counter-ion Asp293 (Asp253 in CrChR2) receives the retinal Schiff base proton during M-state formation. Starting from M, a photocycle branching occurs involving (i) a direct M → D transition and (ii) formation of late photointermediates N and O. 3) The DC pair residue Asp196 (Asp156 in CrChR2) deprotonates in N → O transition. Interestingly, the D196N mutation increases 15-syn-retinal at the expense of 15-anti, which is the predominant isomer in the wild type, and abolishes the peak current in electrophysiological measurements. This suggests that the peak current is formed by 15-anti species, whereas 15-syn species contribute only to the stationary current.
Collapse
Affiliation(s)
- Joel C D Kaufmann
- From the Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,.
| | | | | | | | | | - Franz J Bartl
- From the Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,; Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany.
| |
Collapse
|
5
|
Shigeta A, Ito S, Inoue K, Okitsu T, Wada A, Kandori H, Kawamura I. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin. Biochemistry 2017; 56:543-550. [PMID: 28040890 DOI: 10.1021/acs.biochem.6b00999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recently identified Krokinobacter rhodopsin 2 (KR2) functions as a light-driven sodium ion pump. The structure of the retinal-binding pocket of KR2 offers important insights into the mechanisms of KR2, which has motif of Asn112, Asp116, and Gln123 (NDQ) that is common among sodium ion pump rhodopsins but is unique among other microbial rhodopsins. Here we present solid-state nuclear magnetic resonance (NMR) characterization of retinal and functionally important residues in the vicinity of retinal in the ground state. We assigned chemical shifts of retinal C14 and C20 atoms, and Tyr218Cζ, Lys255Cε, and the protonated Schiff base of KR2 in lipid environments at acidic and neutral pH. 15N NMR signals of the protonated Schiff base showed a twist around the N-Cε bond under neutral conditions, compared with other microbial rhodopsins. These data indicated that the location of the counterion Asp116 is one helical pitch toward the cytoplasmic side. In acidic environments, the 15N Schiff base signal was shifted to a lower field, indicating that protonation of Asp116 induces reorientation during interactions between the Schiff base and Asp116. In addition, the Tyr218 residue in the vicinity of retinal formed a weak hydrogen bond with Asp251, a temporary Na+-binding site during the photocycle. These features may indicate unique mechanisms of sodium ion pumps.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University , Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,PRESTO, Japan Science and Technology Agency (JST) , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Okitsu
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University , Higashinada-ku, Kobe 658-8558, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University , Higashinada-ku, Kobe 658-8558, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University , Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|