1
|
Liu X, Zheng D, Long Y, Wang L. Highly Robust Nanogels from Thermal-Responsive Nanoparticles with Controlled Swelling for Engineering Deployments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11175-11184. [PMID: 36799692 DOI: 10.1021/acsami.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regular nanogels have been demonstrated their inefficiency for subterranean oil recovery due to their intrinsic drawbacks of fast swelling within minutes, thermal instability, and salinity vulnerability. Prior deployment of swelling delayed nanogels mainly depended on the reservoirs at a relatively higher temperature. To address the issues encountered during engineering deployment, hereinwe devised an integrative approach to in situ form swelling delayed robust nanogels by introducing radically active monomers with thermally sensitive moieties. The nanoparticles with hydrophobic cores in brine in response to thermal input in situ generated well-dispersed hydrophilic nanogels, which showed a pronounced delayed swelling of a week compared to traditional nanogels showing swelling kinetics within minutes. Furthermore, the formation of swelling-delayed nanogels could occur at ambient temperature. This behavior was radically different from that of temperature-controlled labile cross-linkers containing nanogels, requiring temperatures greater than 50 °C for volume increase thanks to ester hydrolysis. In addition, the in-situ formed nanogels displayed long-term thermal stability and salinity tolerance under hostile media at temperatures up to 130 °C. The release of an acidic proton under aqueous conditions has been demonstrated to control the microenvironment for various scenarios. The nanotechnology of converting hydrophobic nanoparticles to hydrophilic nanogels could be applied in a wide range of practical applications such as plugging materials and foaming stabilizers for in-depth conformance control during water and CO2 flooding.
Collapse
Affiliation(s)
- Xing Liu
- Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Wuhan 430074, China
| | - Da Zheng
- PetroChina Oil, Gas & New Energies Company, Beijing 100007, China
| | - Yifu Long
- CNPC Research Institute of Engineering Technology, Beijing 102206, China
| | - Lizhu Wang
- Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Jahn P, Zelner M, Freger V, Ulbricht M. Polystyrene Sulfonate Particles as Building Blocks for Nanofiltration Membranes. MEMBRANES 2022; 12:1138. [PMID: 36422130 PMCID: PMC9697654 DOI: 10.3390/membranes12111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Today the standard treatment for wastewater is secondary treatment. This procedure cannot remove salinity or some organic micropollutants from water. In the future, a tertiary cleaning step may be required. An attractive solution is membrane processes, especially nanofiltration (NF). However, currently available NF membranes strongly reject multivalent ions, mainly due to the dielectric effect. In this work, we present a new method for preparing NF membranes, which contain negatively and positively charged domains, obtained by the combination of two polyelectrolytes with opposite charge. The negatively charged polyelectrolyte is provided in the form of particles (polystyrene sulfonate (PSSA), d ~300 nm). As a positively charged polyelectrolyte, polyethyleneimine (PEI) is used. Both buildings blocks and glycerol diglycidyl ether as crosslinker for PEI are applied to an UF membrane support in a simple one-step coating process. The membrane charge (zeta potential) and salt rejection can be adjusted using the particle concentration in the coating solution/dispersion that determine the selective layer composition. The approach reported here leads to NF membranes with a selectivity that may be controlled by a different mechanism compared to state-of-the-art membranes.
Collapse
Affiliation(s)
- Philipp Jahn
- Institute of Technical Chemistry II and Center for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Michael Zelner
- Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Mathias Ulbricht
- Institute of Technical Chemistry II and Center for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
3
|
Biglione C, Neumann‐Tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | | | - Sidra Kanwal
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| |
Collapse
|
4
|
Waheed A, Baig N, Ullah N, Falath W. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112360. [PMID: 33752053 DOI: 10.1016/j.jenvman.2021.112360] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/14/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Water quality plays a central role in the well-being of all the living organisms on planet Earth. The ever-increasing human population and consequently increasing industrialization, urbanization, and chemically boosted cultivation are rapidly contaminating already stressed water resources. The availability of clean drinking water has become scarce for masses across the globe, and this situation is becoming alarming in developing countries. Therefore, the immediate need for cost-effective, easily accessible, eco-friendly, portable, thermally efficient, and chemically stable technologies and materials is desperately felt to meet the high global demand for clean water. To search for effective materials for wastewater treatment, the hyper-cross-linked porous polymers (HCPs) have emerged as an excellent class of porous materials for wastewater treatment due to their unique features of high surface area, tunability, biodegradability, and chemical versatility. This review describes the advances in fabrication strategies and the efficient utilization of hyper-cross-linked porous polymers for wastewater treatment. Moreover, this review specifically discusses the hyper-cross-linked porous polymers effectiveness for the separation of the dyes, nutrients, inorganic ions, organic contaminants, and toxic metals ions. Finally, the review provides insight into the challenges and prospects in the area of hyper-cross-linked porous polymers. Overall, the hyper-cross-linked porous polymers with empowering proper functionalization can provide an opportunity for the wastewater treatment not only to remove toxic contaminants but also to make contaminated water useful for various applications.
Collapse
Affiliation(s)
- Abdul Waheed
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security.
| | - Nadeem Baig
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security.
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Wail Falath
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
5
|
Shevchenko N, Tomšík E, Laishevkina S, Iakobson O, Pankova G. Cross-linked polyelectrolyte microspheres: preparation and new insights into electro-surface properties. SOFT MATTER 2021; 17:2290-2301. [PMID: 33475667 DOI: 10.1039/d0sm02147d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyelectrolyte microspheres find applications in many fields such as ion exchange columns, fuel cell membranes, and catalysis, to name a few. Synthesis of these microspheres by inverse emulsion polymerization offers various advantages due to the increased specific surface area and high surface charge density. The surface charge density of the obtained polyelectrolyte microspheres is a hundred times higher than that of either particles obtained by dispersion copolymerization of styrene and styrenesulfonic acid or sulfonated microspheres. The morphology, chemical structure, and electro-surface properties of the synthesized microspheres were studied by transmission and scanning electron microscopy, FTIR-spectroscopy, and conductometric and potentiometric titrations, respectively. Using the potentiometric titration it is possible to characterize the structure of the surface layer of polyelectrolyte microspheres as entirely as possible. The study of the ion-exchange capacity of polyelectrolyte microspheres shows that ion-exchange capacity is 2.1 meq g-1 in this case, which is more than 2 times higher than that of sulfonated microspheres, and 20 times higher than that of particles obtained by dispersion copolymerization.
Collapse
Affiliation(s)
- Natalia Shevchenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr., 31, Saint-Petersburg, 199004, Russia.
| | - Elena Tomšík
- Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, Prague, Czech Republic.
| | - Svetlana Laishevkina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr., 31, Saint-Petersburg, 199004, Russia.
| | - Olga Iakobson
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr., 31, Saint-Petersburg, 199004, Russia.
| | - Galina Pankova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr., 31, Saint-Petersburg, 199004, Russia.
| |
Collapse
|
6
|
Roghmans F, Evdochenko E, Martí-Calatayud M, Garthe M, Tiwari R, Walther A, Wessling M. On the permselectivity of cation-exchange membranes bearing an ion selective coating. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Hofzumahaus C, Hebbeker P, Schneider S. Monte Carlo simulations of weak polyelectrolyte microgels: pH-dependence of conformation and ionization. SOFT MATTER 2018; 14:4087-4100. [PMID: 29569677 DOI: 10.1039/c7sm02528a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the effect of pH on single weak acidic polyelectrolyte microgels under salt-free conditions with (i) varying microgel concentration, (ii) varying content of acidic groups and (iii) different crosslinking densities using Monte Carlo simulations under explicit consideration of the protonation/deprotonation reaction. We assessed both global properties, such as the degree of ionization, the degree of swelling and the counterion distribution, and local properties such as the radial network ionization profile and the ionization along the polymer chains as a function of pH. We found a pronounced suppression of the pH-dependent ionization of the microgels, as compared to the ideal titration behavior and a shift of the titration curve to a higher pH originating in the proximity of acidic groups in the microgel. In contrast to macroscopic gels, counterions can leave the microgel, resulting in an effective charge of the network, which hinders the ionization. A decreasing microgel concentration leads to an increased effective charge of the microgel and a more pronounced shift of the titration curve. The number of acidic groups showed only a weak effect on the ionization behavior of the microgels. For two different microgels with different crosslinking densities, similar scaling of the gel size was observed. A distinct transition from an uncharged and unswollen to a highly charged and expanded polymer network was observed for all investigated microgels. The degree of swelling mainly depends on the degree of ionization. An inhomogeneous distribution of the degree of ionization along the radial profile of the microgel was found.
Collapse
Affiliation(s)
- C Hofzumahaus
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - P Hebbeker
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - S Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
8
|
|
9
|
Abstract
Microgels are macromolecular networks swollen by the solvent in which they are dissolved. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles, or vesicles. The size of the microgel networks is in the range of several micrometers down to nanometers (then sometimes called "nanogels"). In a collapsed state, they might resemble hard colloids but they can still contain significant amounts of solvent. When swollen, they are soft and have a fuzzy surface with dangling chains. The presence of cross-links provides structural integrity, in contrast to linear and (hyper)branched polymers. Obviously, the cross-linker content will allow control of whether microgels behave more "colloidal" or "macromolecular". The combination of being soft and porous while still having a stable structure through the cross-linked network allows for designing microgels that have the same total chemical composition, but different properties due to a different architecture. Microgels based, e.g., on two monomers but have either statistical spatial distribution, or a core-shell or hollow-two-shell morphology will display very different properties. Microgels provide the possibility to introduce chemical functionality at different positions. Combining architectural diversity and compartmentalization of reactive groups enables thus short-range coexistence of otherwise instable combinations of chemical reactivity. The open microgel structure is beneficial for uptake-release purposes of active substances. In addition, the openness allows site-selective integration of active functionalities like reactive groups, charges, or markers by postmodification processes. The unique ability of microgels to retain their colloidal stability and swelling degree both in water and in many organic solvents allows use of different chemistries for the modification of microgel structure. The capability of microgels to adjust both their shape and volume in response to external stimuli (e.g., temperature, ionic strength and composition, pH, electrochemical stimulus, pressure, light) provides the opportunity to reversibly tune their physicochemical properties. From a physics point of view, microgels are particularly intriguing and challenging, since their intraparticle properties are intimately linked to their interparticle behavior. Microgels, which reveal interface activity without necessarily being amphiphilic, develop even more complex behavior when located at fluid or solid interfaces: the sensitivity of microgels to various stimuli allows, e.g., the modulation of emulsion stability, adhesion, sensing, and filtration. Hence, we envision an ever-increasing relevance of microgels in these fields including biomedicine and process technology. In sum, microgels unite properties of very different classes of materials. Microgels can be based on very different (bio)macromolecules such as, e.g., polysaccharides, peptides, or DNA, as well as on synthetic polymers. This Account focuses on synthetic microgels (mainly based on acrylamides); however, the general, fundamental features of microgels are independent of the chemical nature of the building moieties. Microgels allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric, and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.
Collapse
Affiliation(s)
- Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Walter Richtering
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
| |
Collapse
|
10
|
Electrochemical impedance spectroscopy fingerprints the ion selectivity of microgel functionalized ion-exchange membranes. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Han K, Tiwari R, Heuser T, Walther A. Simple Platform Method for the Synthesis of Densely Functionalized Microgels by Modification of Active Ester Latex Particles. Macromol Rapid Commun 2016; 37:1323-30. [DOI: 10.1002/marc.201600213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/23/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Kang Han
- DWI-Leibniz Institute for Interactive Materials; Forckenbeckstr. 50 52074 Aachen Germany
| | - Rahul Tiwari
- DWI-Leibniz Institute for Interactive Materials; Forckenbeckstr. 50 52074 Aachen Germany
| | - Thomas Heuser
- DWI-Leibniz Institute for Interactive Materials; Forckenbeckstr. 50 52074 Aachen Germany
| | - Andreas Walther
- DWI-Leibniz Institute for Interactive Materials; Forckenbeckstr. 50 52074 Aachen Germany
| |
Collapse
|
12
|
Maccarrone S, Mergel O, Plamper FA, Holderer O, Richter D. Electrostatic Effects on the Internal Dynamics of Redox-Sensitive Microgel Systems. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Simona Maccarrone
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| | - Olga Mergel
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Olaf Holderer
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| | - Dieter Richter
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| |
Collapse
|
13
|
Tiwari R, Heuser T, Weyandt E, Wang B, Walther A. Polyacid microgels with adaptive hydrophobic pockets and ampholytic character: synthesis, solution properties and insights into internal nanostructure by cryogenic-TEM. SOFT MATTER 2015; 11:8342-8353. [PMID: 26350118 DOI: 10.1039/c5sm01327e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microgels with internal and reconfigurable complex nanostructure are emerging as possible adaptive particles, yet they remain challenging to design synthetically. Here, we report the synthesis of highly charged poly(methacrylic acid) (PMAA) microgels incorporating permanent (poly(methyl methacrylate) (PMMA)) and switchable hydrophobic pockets (poly(N,N'-diethylaminoethyl methacrylate) (PDEAEMA)) via emulsion polymerization. We demonstrate detailed tuning of the size, crosslinking density and tailored incorporation of functional comonomers into the polyacid microgels. Analysis via cryo-TEM and pyrene probe measurements reveal switchable hydrophobic pockets inside the microgels as a function of pH. The particles show a rich diversity of internal phase-segregation, that adapts to the surrounding conditions. Large amounts of hydrophobic pockets even lead to hydrophobic bridging between particles. The study shows ways towards tailored polyelectrolyte microgels with narrow dispersity, high charge density, as well as tailored and reconfigurable hydrophobic compartments and interactions.
Collapse
Affiliation(s)
- Rahul Tiwari
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| | - Thomas Heuser
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| | - Elisabeth Weyandt
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| | - Baochun Wang
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| | - Andreas Walther
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| |
Collapse
|