1
|
Wang K, Bao X. Computational Insights into the Photoinduced Dimeric Gold-Catalyzed Divergent Dechloroalkylation of gem-Dichloroalkanes with Alkenes. J Am Chem Soc 2024; 146:7679-7689. [PMID: 38448393 DOI: 10.1021/jacs.3c14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The employment of dinuclear Au(I) catalysts in photomediated modern organic transformations has attracted significant attention over the past decade, which commonly demonstrates unique catalytic performance compared with the corresponding mononuclear gold complexes. Nevertheless, detailed mechanisms of dinuclear gold catalysis remain ambiguous, and further mechanistic understanding is highly desirable. Herein, computational studies were carried out to gain mechanistic insights into the photoinduced dinuclear gold-catalyzed divergent dechloroalkylation of gem-dichloroalkanes. Computational results suggest that a proton transfer from the additive, Hantzsch ester (HE), to the base, guanidine, could lead to an ionic pair complex, which is ready to undergo excitation under blue light irradiation to result in the corresponding triplet excited state. Then, the excited complex might undergo oxidative quenching with the dinuclear gold photocatalyst [AuI-AuI]2+, via a single-electron-transfer (SET) step to afford an unusual [Au1/2-Au1/2]+ dinuclear species. The corresponding mononuclear gold catalyst, [AuI]+, however, is not ready to enable the analogous step to give a [Au0] species, which might account for the unique characteristics of dinuclear gold catalysis. Subsequently, the formed [Au1/2-Au1/2]+ intermediate could trigger a Cl-atom transfer from dichloromethane in an inner-sphere manner to furnish a critical chloromethyl radical. Next, the resulting chloromethyl radical could attack the alkenyl moiety of substrates to generate the corresponding alkyl radicals. Then, three possible mechanistic pathways were explored to rationalize the substrate-dependent divergent transformations in this protocol. The main factors responsible for the diversified transformations were discussed.
Collapse
Affiliation(s)
- Kaifeng Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Dumur F. Recent Advances in Monocomponent Visible Light Photoinitiating Systems Based on Sulfonium Salts. Polymers (Basel) 2023; 15:4202. [PMID: 37959882 PMCID: PMC10649563 DOI: 10.3390/polym15214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
During the last decades, multicomponent photoinitiating systems have been the focus of intense research efforts, especially for the design of visible light photoinitiating systems. Although highly reactive three-component and even four-component photoinitiating systems have been designed, the complexity to elaborate such mixtures has incited researchers to design monocomponent Type II photoinitiators. Using this approach, the photosensitizer and the radical/cation generator can be combined within a unique molecule, greatly simplifying the elaboration of the photocurable resins. In this field, sulfonium salts are remarkable photoinitiators but these structures lack absorption in the visible range. Over the years, various structural modifications have been carried out in order to redshift their absorptions in the visible region. In this work, an overview of the different sulfonium salts activable under visible light and reported to date is proposed.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
3
|
Fang QY, Han J, Qin M, Li W, Zhu C, Xie J. Trinuclear Gold-Catalyzed 1,2-Difunctionalization of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202305121. [PMID: 37170888 DOI: 10.1002/anie.202305121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Activated alkyl halides have been extensively explored to generate alkyl radicals with Ru- and Ir- photocatalysts for 1,2-difunctionalization of alkenes, but unactivated alkyl bromides remain challenging substrates due to their strong reduction potential. Here we report a three-component 1,2-difunctionalization reaction of alkenes, unactivated alkyl bromides and nucleophiles (e.g., amines and indoles) using a trinuclear gold catalyst [Au3 (tppm)2 ](OTf)3 . It can achieve the 1,2-aminoalkylation and 1,2-alkylarylation readily. This protocol has a broad reaction scope and excellent functional group compatibility (>100 examples with up to 96 % yield). It also affords a robust formal [2+2+1] cyclization strategy for the concise construction of pyrrolidine skeletons under mild reaction conditions. Mechanistic studies support an inner-sphere single electron transfer pathway for the successful cleavage of inert C-Br bonds.
Collapse
Affiliation(s)
- Qing-Yun Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mingzhe Qin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
4
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Ji CL, Han J, Li T, Zhao CG, Zhu C, Xie J. Photoinduced gold-catalyzed divergent dechloroalkylation of gem-dichloroalkanes. Nat Catal 2022. [DOI: 10.1038/s41929-022-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Aydogan C, Yilmaz G, Shegiwal A, Haddleton DM, Yagci Y. Photoinduced Controlled/Living Polymerizations. Angew Chem Int Ed Engl 2022; 61:e202117377. [PMID: 35128771 DOI: 10.1002/anie.202117377] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/09/2022]
Abstract
The application of photochemistry in polymer synthesis is of interest due to the unique possibilities offered compared to thermochemistry, including topological and temporal control, rapid polymerization, sustainable low-energy processes, and environmentally benign features leading to established and emerging applications in adhesives, coatings, adaptive manufacturing, etc. In particular, the utilization of photochemistry in controlled/living polymerizations often offers the capability for precise control over the macromolecular structure and chain length in addition to the associated advantages of photochemistry. Herein, the latest developments in photocontrolled living radical and cationic polymerizations and their combinations for application in polymer syntheses are discussed. This Review summarizes and highlights recent studies in the emerging area of photoinduced controlled/living polymerizations. A discussion of mechanistic details highlights differences as well as parallels between different systems for different polymerization methods and monomer applicability.
Collapse
Affiliation(s)
- Cansu Aydogan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gorkem Yilmaz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Ataulla Shegiwal
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - David M Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
7
|
Aydogan C, Yilmaz G, Shegiwal A, Haddleton DM, Yagci Y. Photoinduced Controlled/Living Polymerizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cansu Aydogan
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Gorkem Yilmaz
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
| | - Ataulla Shegiwal
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Yusuf Yagci
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
| |
Collapse
|
8
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
9
|
Abe R, Tsuchido Y, Ide T, Koizumi TA, Osakada K. Digold(I) Thianthrenyl Complexes. Effect of Diphosphine Ligands on Molecular Structures in the Solid State and in Solution. ACS OMEGA 2022; 7:9594-9601. [PMID: 35350371 PMCID: PMC8945089 DOI: 10.1021/acsomega.1c06938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/14/2022] [Indexed: 05/28/2023]
Abstract
A series of digold complexes possessing two thianthrenyl ligands, Au2(Thi)2(Ph2P(CH2) n PPh2) (Thi: 1-thianthrenyl; 1: n = 1, 2: n = 2, 3: n = 3, 4: n = 4), were prepared and characterized by crystallographic and spectroscopic measurements. X-ray crystallography of complexes 1 and 3 revealed U-shaped structures with short Au-Au distances [3.2171(3) Å and 3.0735(2) Å]. Complex 2 and three of the four structure-determined molecules of complex 4 showed structures without Au-Au contacts. UV-vis spectroscopic measurements of 1-4 and TD-DFT calculations of the two conformers of 1 revealed that complexes 1 and 3 in the solution phase contained conformers with Au(I)-Au(I) interactions in a much higher proportion than complexes 2 and 4. As a result, complexes with diphosphine ligands containing an odd number of methylene groups preferred structures with Au-Au interactions in the solid state and in solution. Oxidation of 1 with 2 equiv of PhICl2 yielded a mixture of monomeric and dimeric thianthrenes and its dimer via ligand elimination and C-C coupling, respectively.
Collapse
Affiliation(s)
- Ryota Abe
- Laboratory
for Chemistry and Life Science, Institute
of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshitaka Tsuchido
- Laboratory
for Chemistry and Life Science, Institute
of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tomohito Ide
- Department
of Chemical Science and Engineering, National
Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo 193-0997, Japan
| | - Take-aki Koizumi
- Advanced
Institute of Analysis Center, Shizuoka Institute
of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Kohtaro Osakada
- Laboratory
for Chemistry and Life Science, Institute
of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- National
Institute of Advance Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
10
|
Zhang J, Duan J, Chen D, Ma Y, Yang W. Direct Photolysis RAFT Polymerization of (Metha)acrylate with 2‐Cyano‐2‐propyldodecyl Trithiocarbonate as Mediator. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianxiong Zhang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Junjin Duan
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Dong Chen
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Yuhong Ma
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Wantai Yang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
11
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
12
|
Teets TS, Wu Y, Kim D. Photophysical Properties and Redox Potentials of Photosensitizers for Organic Photoredox Transformations. Synlett 2021. [DOI: 10.1055/a-1390-9065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPhotoredox catalysis has proven to be a powerful tool in synthetic organic chemistry. The rational design of photosensitizers with improved photocatalytic performance constitutes a major advancement in photoredox organic transformations. This review summarizes the fundamental ground-state and excited-state photophysical and electrochemical attributes of molecular photosensitizers, which are important determinants of their photocatalytic reactivity.
Collapse
|
13
|
Affiliation(s)
- Sina Witzel
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Abstract
This review summarizes the recent achievements of dinuclear gold-catalyzed redox coupling, asymmetric catalysis and photocatalysis. The dinuclear gold catalysts show a better catalytic performance than the mononuclear gold catalysts in certain cases.
Collapse
Affiliation(s)
- Wenliang Wang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
15
|
Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK. Homogeneous and Heterogeneous Gold Catalysis for Materials Science. Chem Rev 2020; 121:9113-9163. [DOI: 10.1021/acs.chemrev.0c00824] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takumi Koshikawa
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
17
|
Zidan M, McCallum T, Swann R, Barriault L. Formal Bromine Atom Transfer Radical Addition of Nonactivated Bromoalkanes Using Photoredox Gold Catalysis. Org Lett 2020; 22:8401-8406. [DOI: 10.1021/acs.orglett.0c03030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Montserrat Zidan
- Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa, Ontario K1N 6N5, Canada
| | - Terry McCallum
- Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa, Ontario K1N 6N5, Canada
| | - Rowan Swann
- Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa, Ontario K1N 6N5, Canada
| | - Louis Barriault
- Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
18
|
Schmidbaur H, Raubenheimer HG. Excimer and Exciplex Formation in Gold(I) Complexes Preconditioned by Aurophilic Interactions. Angew Chem Int Ed Engl 2020; 59:14748-14771. [PMID: 32022383 PMCID: PMC7496071 DOI: 10.1002/anie.201916255] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 11/23/2022]
Abstract
Excimers and exciplexes are defined as assemblies of atoms or molecules A/A' where interatomic/intermolecular bonding appears only in excited states such as [A2 ]* (for excimers) and [AA']* (for exciplexes). Their formation has become widely known because of their role in gas-phase laser technologies, but their significance in general chemistry terms has been given little attention. Recent investigations in gold chemistry have opened up a new field of excimer and exciplex chemistry that relies largely on the preorganization of gold(I) compounds (electronic configuration AuI (5d10 )) through aurophilic contacts. In the corresponding excimers, a new type of Au⋅⋅⋅Au bonding arises, with bond energies and lengths approaching those of ground-state Au-Au bonds between metal atoms in the Au0 (5d10 6s1 ) and AuII (5d9 ) configurations. Excimer formation gives rise to a broad range of photophysical effects, for which some of the relaxation dynamics have recently been clarified. Excimers have also been shown to play an important role in photoredox binuclear gold catalysis.
Collapse
Affiliation(s)
- Hubert Schmidbaur
- Department ChemieTechnische Universität MünchenLichtenbergstr. 485747GarchingGermany
| | - Helgard G. Raubenheimer
- Department of Chemistry and Polymer ScienceUniversity of StellenboschPrivate Bag X1Matieland7602South Africa
| |
Collapse
|
19
|
Thioxanthone Derivatives as a New Class of Organic Photocatalysts for Photopolymerisation Processes and the 3D Printing of Photocurable Resins under Visible Light. Catalysts 2020. [DOI: 10.3390/catal10080903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the present paper, novel thioxanthone-based compounds were synthesised and evaluated as a component of photoredox catalysts/photoinitiating systems for the free-radical polymerisation (FRP) of acrylates and the ring-opening cationic polymerisation (CP) of epoxy monomers. The performance of the obtained thioxanthones in two- and three-component photoinitiating systems, in combination with amines, iodonium or sulphonium salt, as well as with alkyl halide, for photopolymerisation processes upon exposure to light emitting diodes (LEDs) with a maximum emission of 405 nm and 420 nm, was investigated. The studied compounds act also as one-component free-radical photoinitiators. Fourier transform real-time infrared spectroscopy was used to monitor the kinetics of disappearance of the functional groups of the monomers during photoinitiated polymerisation. Excellent photoinitiating efficiency and high final conversions of functional groups were observed. Moreover, the influence of thioxanthone skeleton substitution on photoinitiating efficiency was discussed. The photochemical mechanism was also investigated through cyclic voltammetry. It was discovered that thioxanthone derivatives can be used as a metal-free photoredox catalyst active for both oxidative and reductive cycles. Furthermore, a photopolymerizable system based on novel thioxanthone derivatives in a stereolithography three-dimensional (3D) printing technology under visible sources of light was used. The effects of photoinitiator type system and monomer type in photoresins during 3D printing processes were explored. The outcome of this research is the development of high-performance visible photosensitive resins with improved photosensitivity obtained thanks to the development of entirely novel photoinitiating systems specifically adapted for this application.
Collapse
|
20
|
Liu Y, Chen Q, Tong Y, Ma Y. 9,9-Dimethyl Dihydroacridine-Based Organic Photocatalyst for Atom Transfer Radical Polymerization from Modifying “Unstable” Electron Donor. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yiming Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yujie Tong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Schmidbaur H, Raubenheimer HG. Excimer‐ und Exciplex‐Bildung in durch aurophile Wechselwirkungen präkonditionierten Gold(I)‐ Komplexen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hubert Schmidbaur
- Department Chemie Technische Universität München Lichtenbergstr. 4 85747 Garching Deutschland
| | - Helgard G. Raubenheimer
- Department of Chemistry and Polymer Science University of Stellenbosch Private Bag X1 Matieland 7602 Südafrika
| |
Collapse
|
22
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
23
|
A. C. A. Bayrakdar T, Scattolin T, Ma X, Nolan SP. Dinuclear gold(i) complexes: from bonding to applications. Chem Soc Rev 2020; 49:7044-7100. [DOI: 10.1039/d0cs00438c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The last two decades have seen a veritable explosion in the use of gold(i) complexes bearing N-heterocyclic carbene (NHC) and phosphine (PR3) ligands.
Collapse
Affiliation(s)
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Xinyuan Ma
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|
24
|
Affiliation(s)
- Jong-Hwa Shon
- Department of Chemistry, University of Houston, Houston, TX, USA
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
25
|
|
26
|
Zhang W, Zhang X, Ma Y, Chen D, Yang W. Visible Light–Induced RAFT Polymerization of Methacrylate with 4‐(
N
,
N
‐diphenylamino)benzaldehyde as Organophotoredox Catalyst and the Effect of Temperature on the Polymerization. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wenxiu Zhang
- Key Laboratory of Carbon Fiber and Functional PolymersMinistry of EducationBeijing University of Chemical Technology Beijing 100029 China
| | - Xianhong Zhang
- Key Laboratory of Carbon Fiber and Functional PolymersMinistry of EducationBeijing University of Chemical Technology Beijing 100029 China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional PolymersMinistry of EducationBeijing University of Chemical Technology Beijing 100029 China
| | - Dong Chen
- Key Laboratory of Carbon Fiber and Functional PolymersMinistry of EducationBeijing University of Chemical Technology Beijing 100029 China
| | - Wantai Yang
- Key Laboratory of Carbon Fiber and Functional PolymersMinistry of EducationBeijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
27
|
Wu C, Corrigan N, Lim CH, Jung K, Zhu J, Miyake G, Xu J, Boyer C. Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerization: Halogenated Xanthene Dyes. Macromolecules 2019; 52:236-248. [PMID: 31537947 PMCID: PMC6752221 DOI: 10.1021/acs.macromol.8b02517] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
By examining structurally similar halogenated xanthene dyes, this study establishes a guiding principle for resolving structure-property- performance relationships in the photocontrolled PET-RAFT polymerization system (PET-RAFT: photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer). We investigated the effect of the halogen substituents on the photophysical and electrochemical properties of the xanthene dyes acting as photocatalysts and their resultant effect on the performance of PET-RAFT polymerization. Consideration of the structure- property-performance relationships allowed design of a new xanthene photocatalyst, where its photocatalytic activity (oxygen tolerance and polymerization rate) was successfully optimized for PET-RAFT polymerization. We expect that this study will serve as a theoretical framework in broadly guiding the design of high performance photocatalysts for organic photocatalysis.
Collapse
Affiliation(s)
- Chenyu Wu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jian Zhu
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Yu H, Zhang X, Zhang S. Mechanism of Photocatalytic Cyclization of Bromoalkenes with a Dimeric Gold Complex. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People’s Republic of China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Xiaofang Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| | - Shaojie Zhang
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| |
Collapse
|
29
|
Corrigan N, Shanmugam S, Xu J, Boyer C. Photocatalysis in organic and polymer synthesis. Chem Soc Rev 2018; 45:6165-6212. [PMID: 27819094 DOI: 10.1039/c6cs00185h] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review, with over 600 references, summarizes the recent applications of photoredox catalysis for organic transformation and polymer synthesis. Photoredox catalysts are metallo- or organo-compounds capable of absorbing visible light, resulting in an excited state species. This excited state species can donate or accept an electron from other substrates to mediate redox reactions at ambient temperature with high atom efficiency. These catalysts have been successfully implemented for the discovery of novel organic reactions and synthesis of added-value chemicals with an excellent control of selectivity and stereo-regularity. More recently, such catalysts have been implemented by polymer chemists to post-modify polymers in high yields, as well as to effectively catalyze reversible deactivation radical polymerizations and living polymerizations. These catalysts create new approaches for advanced organic transformation and polymer synthesis. The objective of this review is to give an overview of this emerging field to organic and polymer chemists as well as materials scientists.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Zidan M, Rohe S, McCallum T, Barriault L. Recent advances in mono and binuclear gold photoredox catalysis. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01765d] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this minireview, recent developments in the field of photoredox catalysis and the applications of mono and binuclear Au(i) complexes in organic transformations are discussed.
Collapse
Affiliation(s)
- M. Zidan
- Centre for Catalysis
- Research and Innovation Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- K1N 6N5 Canada
| | - S. Rohe
- Centre for Catalysis
- Research and Innovation Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- K1N 6N5 Canada
| | - T. McCallum
- Centre for Catalysis
- Research and Innovation Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- K1N 6N5 Canada
| | - L. Barriault
- Centre for Catalysis
- Research and Innovation Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- K1N 6N5 Canada
| |
Collapse
|
31
|
Zuo X, Morlet-Savary F, Schmitt M, Le Nouën D, Blanchard N, Goddard JP, Lalevée J. Novel applications of fluorescent brighteners in aqueous visible-light photopolymerization: high performance water-based coating and LED-assisted hydrogel synthesis. Polym Chem 2018. [DOI: 10.1039/c8py00584b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercial fluorescent brighteners are shown to be active photoinitiators in aqueous visible-light photopolymerization.
Collapse
Affiliation(s)
- Xiaoling Zuo
- Université de Haute-Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | | | - Michael Schmitt
- Université de Haute-Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | - Didier Le Nouën
- Université de Haute-Alsace
- Université de Strasbourg
- CNRS
- LIMA
- UMR 7042
| | | | | | - Jacques Lalevée
- Université de Haute-Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| |
Collapse
|
32
|
Luo G, Sun C, Li Y, Li X, Zhao Z. N2-selective alkylation of NH-1,2,3-triazoles with vinyl ethers via gold catalysis. RSC Adv 2018; 8:27610-27615. [PMID: 35542727 PMCID: PMC9083898 DOI: 10.1039/c8ra04790a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023] Open
Abstract
A new method was developed to synthesize N2-alkyl-substituted 1,2,3-triazoles via gold catalyzed alkylation of vinyl ethers with mono- and unsubstituted NH-1,2,3-triazoles and benzotriazole. A hydrogen bond between the oxygen atom of the vinyl ethers, activated via the gold catalyst, and the NH-1,2,3-triazoles was supposed to be generated, which selectively gave the N2-alkylation products. A new method was developed to synthesize N2-alkyl-substituted 1,2,3-triazoles via gold catalyzed alkylation of vinyl ethers with mono- and unsubstituted NH-1,2,3-triazoles and benzotriazole.![]()
Collapse
Affiliation(s)
- Guoli Luo
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| | - Chenyang Sun
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| | - Yan Li
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| | - Xiaoxiao Li
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| | - Zhigang Zhao
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- P. R. China
| |
Collapse
|
33
|
Pan X, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev 2018; 47:5457-5490. [DOI: 10.1039/c8cs00259b] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ATRP can be externally controlled by electrical current, light, mechanical forces and various chemical reducing agents. The mechanistic aspects and preparation of polymers with complex functional architectures and their applications are critically reviewed.
Collapse
Affiliation(s)
- Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Marco Fantin
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Fang Yuan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|
34
|
Liu X, Ni Y, Wu J, Jiang H, Zhang Z, Zhang L, Cheng Z, Zhu X. A sustainable photocontrolled ATRP strategy: facile separation and recycling of a visible-light-mediated catalyst fac-[Ir(ppy)3]. Polym Chem 2018. [DOI: 10.1039/c7py02008b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A visible-light-mediated catalyst (fac-[Ir(ppy)3]) in situ separation and recycling ATRP system for PEG-based water-soluble monomers was constructed.
Collapse
Affiliation(s)
- Xiaodong Liu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuanyuan Ni
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Wu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Hongjuan Jiang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
35
|
Wang GX, Lu M, Zhou MJ. Photo-induced metal-free ATRP of MMA with 2,7-bi-(N-penothiazinyl)fluorenone as photocatalyst. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1387493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guo-Xiang Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province, China
| | - Mang Lu
- Department of Chemistry, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi Province, China
| | - Min-Jie Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province, China
| |
Collapse
|
36
|
McGee P, Brousseau J, Barriault L. Development of New Gold (I)-Catalyzed Carbocyclizations and their Applications in the Synthesis of Natural Products. Isr J Chem 2017. [DOI: 10.1002/ijch.201700054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philippe McGee
- Center for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Canada K1N 6N5
| | - Julie Brousseau
- Center for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Canada K1N 6N5
| | - Louis Barriault
- Center for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Canada K1N 6N5
| |
Collapse
|
37
|
Shanmugam S, Xu J, Boyer C. Photocontrolled Living Polymerization Systems with Reversible Deactivations through Electron and Energy Transfer. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700143] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/10/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
38
|
Bian C, Zhou YN, Guo JK, Luo ZH. Visible-Light-Induced Atom-Transfer-Radical Polymerization with a ppm-Level Iron Catalyst. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chao Bian
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin-Ning Zhou
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun-Kang Guo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
39
|
Boubertakh O, Goddard JP. Construction and Functionalization of Heteroarenes by Use of Photoredox Catalysis. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601653] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oualid Boubertakh
- Laboratoire de Chimie Organique et Bioorganique EA 4566; Université de Haute-Alsace; 3 bis rue Alfred Werner 68093 Mulhouse Cedex France
| | - Jean-Philippe Goddard
- Laboratoire de Chimie Organique et Bioorganique EA 4566; Université de Haute-Alsace; 3 bis rue Alfred Werner 68093 Mulhouse Cedex France
| |
Collapse
|
40
|
Ma T, Sun C, Yuan X, Li X, Zhao Z. N-2-Selective gold-catalyzed alkylation of 1-sulfonyl-1,2,3-trizoles. RSC Adv 2017. [DOI: 10.1039/c6ra26521a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient new method was developed to synthesis N-2-alkyl-1,2,3-trizoles via gold catalyzed alkylation of 1-sulfonyl-1,2,3-trizoles with vinyl ethers.
Collapse
Affiliation(s)
- Ting Ma
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| | - Chenyang Sun
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| | - Xiao Yuan
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| | - Xiaoxiao Li
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| | - Zhigang Zhao
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| |
Collapse
|
41
|
Al Mousawi A, Kermagoret A, Versace DL, Toufaily J, Hamieh T, Graff B, Dumur F, Gigmes D, Fouassier JP, Lalevée J. Copper photoredox catalysts for polymerization upon near UV or visible light: structure/reactivity/efficiency relationships and use in LED projector 3D printing resins. Polym Chem 2017. [DOI: 10.1039/c6py01958g] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copper complexes are synthesized and evaluated as new photoredox catalysts/photoinitiators.
Collapse
Affiliation(s)
- Assi Al Mousawi
- Institut de Science des Matériaux de Mulhouse IS2M – UMR CNRS 7361 – UHA
- 68057 Mulhouse Cedex
- France
- Laboratoire de Matériaux
- Catalyse
| | - Anthony Kermagoret
- Aix Marseille Univ
- CNRS
- Institut de Chimie Radicalaire (ICR)
- UMR 7273
- 13397 Marseille
| | - Davy-Louis Versace
- Université Paris-Est Créteil (UPEC) – ICMPE UMR CNRS 7182
- 94010 Créteil cedex
- France
| | - Joumana Toufaily
- Laboratoire de Matériaux
- Catalyse
- Environnement et Méthodes analytiques (MCEMA-CHAMSI)
- EDST
- Université Libanaise
| | - Tayssir Hamieh
- Laboratoire de Matériaux
- Catalyse
- Environnement et Méthodes analytiques (MCEMA-CHAMSI)
- EDST
- Université Libanaise
| | - Bernadette Graff
- Institut de Science des Matériaux de Mulhouse IS2M – UMR CNRS 7361 – UHA
- 68057 Mulhouse Cedex
- France
| | - Frederic Dumur
- Aix Marseille Univ
- CNRS
- Institut de Chimie Radicalaire (ICR)
- UMR 7273
- 13397 Marseille
| | - Didier Gigmes
- Aix Marseille Univ
- CNRS
- Institut de Chimie Radicalaire (ICR)
- UMR 7273
- 13397 Marseille
| | - Jean Pierre Fouassier
- Institut de Science des Matériaux de Mulhouse IS2M – UMR CNRS 7361 – UHA
- 68057 Mulhouse Cedex
- France
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse IS2M – UMR CNRS 7361 – UHA
- 68057 Mulhouse Cedex
- France
| |
Collapse
|
42
|
Zidan M, McCallum T, Thai-Savard L, Barriault L. Photoredox meets gold Lewis acid catalysis in the alkylative semipinacol rearrangement: a photocatalyst with a dark side. Org Chem Front 2017. [DOI: 10.1039/c7qo00590c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The alkylative semipinacol rearrangement of a variety of TMS protected α-styrenyl substituted cyclic alcohols with unactivated bromoalkanes that merge photoredox and Au(i)/Au(iii) catalysis has been achieved.
Collapse
Affiliation(s)
- M. Zidan
- Centre for Catalysis
- Research and Innovation
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
| | - T. McCallum
- Centre for Catalysis
- Research and Innovation
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
| | - L. Thai-Savard
- Centre for Catalysis
- Research and Innovation
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
| | - L. Barriault
- Centre for Catalysis
- Research and Innovation
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
| |
Collapse
|
43
|
Liu X, Xu Q, Zhang L, Cheng Z, Zhu X. Visible-light-induced living radical polymerization using in situ bromine-iodine transformation as an internal boost. Polym Chem 2017. [DOI: 10.1039/c7py00366h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new visible-light-induced methodology, termed as “bromine-iodine transformation activated living radical polymerization”, was successfully established to build a “bridge” between ATRP and iodine-mediated LRP techniques.
Collapse
Affiliation(s)
- Xiaodong Liu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Qinghua Xu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| |
Collapse
|
44
|
Hosseyni S, Smith CA, Shi X. Gold-Catalyzed Vinyl Ether Hydroalkynylation: An Alternative Pathway for the Gold-Catalyzed Intermolecular Reaction of Alkenes and Alkynes. Org Lett 2016; 18:6336-6339. [PMID: 27978688 PMCID: PMC6430632 DOI: 10.1021/acs.orglett.6b03228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this report, the gold-catalyzed intermolecular reaction of vinyl ethers and terminal alkynes is investigated. Utilizing a triazole gold catalyst lessens gold decomposition in the presence of the vinyl ether and affords an alkynylation product instead of the [2 + 2] product. This protocol has been expanded to include glycal substrates, which undergo a one-pot alkynylation-Ferrier reaction to produce functionalized sugars in moderate to excellent yields with high diastereoselectivity.
Collapse
Affiliation(s)
- Seyedmorteza Hosseyni
- The Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Courtney A. Smith
- The Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xiaodong Shi
- The Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
45
|
Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.06.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Yang Q, Lalevée J, Poly J. Development of a Robust Photocatalyzed ATRP Mechanism Exhibiting Good Tolerance to Oxygen and Inhibitors. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01808] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qizhi Yang
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Jacques Lalevée
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Julien Poly
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| |
Collapse
|
47
|
Goddard JP, Ollivier C, Fensterbank L. Photoredox Catalysis for the Generation of Carbon Centered Radicals. Acc Chem Res 2016; 49:1924-36. [PMID: 27529633 DOI: 10.1021/acs.accounts.6b00288] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Radical chemistry has witnessed over the last decades important advances that have positioned it as a methodology of choice in synthetic chemistry. A number of great attributes such as specific reactivities, the knowledge of the kinetics of most elementary processes, the functional group tolerance, and the possibility to operate cascade sequences are clearly responsible for this craze. Nevertheless, at the end of the last century, radical chemistry appeared plagued by several hurdles to overcome such as the use of environmentally problematic mediators or the impossibility of scale up. While the concept of photocatalysis was firmly established in the coordination chemistry community, its diffusion in organic synthetic chemistry remained sporadic for decades until the end of the 2000s with the breakthrough merging of organocatalysis and photocatalysis by the MacMillan group and contemporary reports by the groups of Yoon and Stephenson. Since then, photoredox catalysis has enjoyed particularly active and intense developments. It is now the topic of a still increasing number of publications featuring various applications from asymmetric synthesis, total synthesis of natural products, and polymerization to process (flow) chemistry. In this Account, we survey our own efforts in this domain, focusing on the elaboration of new photocatalytic pathways that could lead to the efficient generation of C-centered functionalized alkyl and aryl radicals. Both reductive and oxidative manifolds are accessible through photoredox catalysis, which has guided us along these lines in our projects. Thus, we studied the photocatalytic reduction of onium salts such as sulfoniums and iodoniums for the production of the elusive aryl radical intermediates. Progressing to more relevant chemistry for synthesis, we examined the cleavage of C-O and the C-Br bonds for the generation of alkyl C-centered radicals. Activated epoxides could serve as valuable substrates of a photocatalyzed variant of the Nugent-RajanBabu-Gansäuer homolytic cleavage of epoxides. Using imidazole based carbamates, we could also devise the first photocatalyzed Barton-McCombie deoxygenation reaction. Finally, bromophenylacetate can be reduced using the [Au2(μ-dppm)2]Cl2 photocatalyst under UVA or visible-light. This was used for the initiation of the controlled atom transfer radical polymerization of methacrylates and acrylates in solution or laminate. Our next endeavors concerned the photocatalyzed oxidation of stabilized carbanions such as enolates of 1,3-dicarbonyl substrates, trifluoroborates, and more extensively bis-catecholato silicates. Because of their low oxidation potentials, the later have proved to be exquisite sources of radical entities, which can be engaged in diverse intermolecular reactions such as vinylation, alkynylation, and conjugate additions. The bis-catecholato silicates were also shown to behave as excellent partners of dual photoredox-nickel catalysis leading in an expeditious manner to libraries of cross coupling products.
Collapse
Affiliation(s)
- Jean-Philippe Goddard
- Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse,
Laboratoire de Chimie Organique et Bioorganique EA 4566, 3 Bis rue Alfred Werner, 68093 Mulhouse Cedex, France
| | - Cyril Ollivier
- UPMC Univ-Paris 06 − Sorbonne Universités, Institut Parisien de Chimie Moléculaire (UMR
CNRS 8232), 4 Place Jussieu,
C. 229, 75005 Paris, France
| | - Louis Fensterbank
- UPMC Univ-Paris 06 − Sorbonne Universités, Institut Parisien de Chimie Moléculaire (UMR
CNRS 8232), 4 Place Jussieu,
C. 229, 75005 Paris, France
| |
Collapse
|
48
|
Tran H, McCallum T, Morin M, Barriault L. Homocoupling of Iodoarenes and Bromoalkanes Using Photoredox Gold Catalysis: A Light Enabled Au(III) Reductive Elimination. Org Lett 2016; 18:4308-11. [DOI: 10.1021/acs.orglett.6b02021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Huy Tran
- Centre for Catalysis, Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Terry McCallum
- Centre for Catalysis, Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Mathieu Morin
- Centre for Catalysis, Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Louis Barriault
- Centre for Catalysis, Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Xie J, Li J, Weingand V, Rudolph M, Hashmi ASK. Intermolecular Photocatalyzed Heck-like Coupling of Unactivated Alkyl Bromides by a Dinuclear Gold Complex. Chemistry 2016; 22:12646-50. [DOI: 10.1002/chem.201602939] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Xie
- Organisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Jian Li
- Organisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Vanessa Weingand
- Organisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science; King Abdulaziz University (KAU); Jeddah 21589 Saudi Arabia
| |
Collapse
|
50
|
McCallum T, Barriault L. Direct alkylation of heteroarenes with unactivated bromoalkanes using photoredox gold catalysis. Chem Sci 2016; 7:4754-4758. [PMID: 30155127 PMCID: PMC6016576 DOI: 10.1039/c6sc00807k] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022] Open
Abstract
Although visible light photoredox catalysis has emerged as a powerful tool for the construction of C-C bonds, common catalysts and/or their photoexcited states suffer from low redox potentials, limiting their applicability to alkyl radical generation from substrates with activated carbon-halogen bonds. Radicals derived from these activated compounds, being highly electrophilic or stabilized, do not undergo efficient addition to heteroarenes. Herein we describe the photocatalytic generation of nucleophilic alkyl radicals from unactivated bromoalkanes as part of a universal and efficient cross-coupling strategy for the direct alkylation of heteroarenes using a dimeric gold(i) photoredox catalyst, [Au2(bis(diphenylphosphino)methane)2]Cl2. The method proves to be efficient for alkylation of arenes under mild conditions in the absence of directing groups.
Collapse
Affiliation(s)
- T McCallum
- Centre for Catalysis , Research and Innovation , Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie Curie , Ottawa , ON K1N 6N5 , Canada .
| | - L Barriault
- Centre for Catalysis , Research and Innovation , Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie Curie , Ottawa , ON K1N 6N5 , Canada .
| |
Collapse
|