1
|
Leng H, Bai H, Wang X, Yan H, Chen S, Yu F, Han L, Ma H. Synthesis of Alternating Copolymers with Substituents Containing Heteroatoms and the Regulation of Nontraditional Intrinsic Luminescence. Macromol Rapid Commun 2025:e2400970. [PMID: 39895198 DOI: 10.1002/marc.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/02/2025] [Indexed: 02/04/2025]
Abstract
Compared with other sequence structure polymers, alternating polymers usually have several unique properties, but their properties are more sensitive to changes in structure. By investigating the relationship between the structure and properties of alternating polymer chains, polymers with desired properties can likely be synthesized. In this study, a series of alternating copolymers of 1,1-diphenylethylene (DPE) derivatives and styrene derivatives, which exhibit nontraditional intrinsic luminescence (NTIL), are synthesized using living anionic polymerization. By changing the bridge plane structure of the DPE derivatives and the substituent groups of the styrene derivatives, the rigid chain structure of the alternating copolymers containing styrene derivative with a large steric hindrance is altered, and this change is observed by the altered fluorescence properties. Based on the results from experimental tests and theoretical simulations, copolymers with bridge plane structures have higher fluorescence emission intensities; moreover, a balance is observed between the electronic and steric hindrance effects of substituents on the fluorescence intensities, and polymer chains that are too rigid cause a decrease in the fluorescence intensities. Thus, the influence of the chain structure on the fluorescence properties of NTIL polymers cannot be disregarded.
Collapse
Affiliation(s)
- Haitao Leng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongyuan Bai
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuefei Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hong Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Siwei Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Feiyang Yu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Li Han
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongwei Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Ntetsikas K, Ladelta V, Bhaumik S, Hadjichristidis N. Quo Vadis Carbanionic Polymerization? ACS POLYMERS AU 2023; 3:158-181. [PMID: 37065716 PMCID: PMC10103213 DOI: 10.1021/acspolymersau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.
Collapse
Affiliation(s)
- Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Guo Z, He J. Synthesis of Linear and Cyclic Discrete Oligomers with Defined Sequences via Efficient Anionic Coupling Reaction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenhao Guo
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junpo He
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Kim H, Goseki R, Ishizone T. Anionic Self-alternating Polymerization of 1-(4-Vinylphenyl)-1-phenylethylene. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamin Kim
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
5
|
Ikeda S, Shintani R. Anionic stitching polymerization of styryl(vinyl)silanes for the synthesis of sila-cyclic olefin polymers. Chem Commun (Camb) 2022; 58:5281-5284. [PMID: 35393996 DOI: 10.1039/d2cc00721e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anionic stitching polymerization of styryl(vinyl)silanes has been developed for the synthesis of a new type of silicon- and carbon-containing polymer possessing fused sila-bicyclic structures in the main chain. The obtained polymers were found to be thermally stable with relatively high glass-transition temperatures and highly transparent in the visible light region.
Collapse
Affiliation(s)
- Sho Ikeda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
6
|
Hayashi K, Kanazawa A, Aoshima S. Living and Alternating Cationic Copolymerization of o-Phthalaldehyde and Various Bulky Enol Ethers: Elucidation of the “Limit” of Polymerizable Monomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Hayashi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
7
|
Bai H, Han L, Li C, Zhang S, Wang X, Yin Y, Zhang X, Ma H. Alternating Copolymerization Realized with Alternating Transformation of Anion-Migrated Ring-Opening Polymerization and Anionic Polymerization Mechanisms. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongyuan Bai
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chao Li
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Songbo Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Yin
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaolu Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Takahata K, Aizawa N, Nagao M, Uchida S, Goseki R, Ishizone T. Living Anionic Addition Reaction of 1,1-Diphenylethylene Derivatives: One-Pot Synthesis of ABC-type Chain-End Sequence-Controlled Polymers. J Am Chem Soc 2021; 143:11296-11301. [PMID: 34232655 DOI: 10.1021/jacs.1c04500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, a 1:1 addition reaction using 1,1-diphenylethylene (DPE) derivatives, referred to as the "living anionic addition reaction", was established to regulate the sequence of vinyl compounds having negligible homopolymerizability. The stoichiometric and successive addition reaction between a DPE anion and more reactive DPE derivatives proceeded quantitatively when the electrophilicity of the DPE derivatives was sufficiently enhanced by electron-withdrawing groups such as (trimethylsilyl)ethynyl and acyl groups. The relative electrophilicity of the DPE derivatives was predicted by Hammett's law and the β-carbon chemical shifts of the carbon-carbon double bonds. AB- and ABC-type chain-end sequence-controlled polystyrenes with well-defined structures were synthesized by reacting two or three DPE derivatives with difunctional anionic living polystyrene in increasing order of their electrophilicity in a one-pot reaction.
Collapse
Affiliation(s)
- Kazuki Takahata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Naoki Aizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masashi Nagao
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Satoshi Uchida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
9
|
Noble KF, Troya D, Talley SJ, Ilavsky J, Moore RB. High-Resolution Comonomer Sequencing of Blocky Brominated Syndiotactic Polystyrene Copolymers Using 13C NMR Spectroscopy and Computer Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristen F. Noble
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Talley
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jan Ilavsky
- X-ray Science Division, Advanced Photon Source Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert B. Moore
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Precise construction of polymer brush on a nanosilica surface via the combination of anionic polymerization and Ugi-4CR. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Shen H, Han L, Ma H, Liu P, Yang L, Li C, Ma Y, Peng Z, Li Y. Synthesis of polymeric topological isomers based on sequential Ugi-4CR and thiol–yne click reactions with sequence-controlled amino-functionalized polymers. Polym Chem 2020. [DOI: 10.1039/c9py01859j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymeric topological isomers have been designed and synthesized with sequence-controlled amino functionalized polymers.
Collapse
Affiliation(s)
- Heyu Shen
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Chao Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yuting Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Zhixuan Peng
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| |
Collapse
|
12
|
Shen H, Leng X, Han L, Liu P, Li C, Zhang S, Lei L, Ma H, Li Y. Investigating the effect of grafting density on the surface properties for sequence-determined fluoropolymer films. Polym Chem 2020. [DOI: 10.1039/d0py01108h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six sequence-determined fluoropolymers were synthesized and their surface properties were affected by their grafting densities. The reason can be attributed to the assembled structure of the perfluoroalkyl chains at the surface.
Collapse
Affiliation(s)
- Heyu Shen
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Xuefei Leng
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Li Han
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Pibo Liu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Chao Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Songbo Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Lan Lei
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Hongwei Ma
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
13
|
Yang L, Shen H, Han L, Ma H, Li C, Lei L, Zhang S, Liu P, Li Y. Sequence regulation in living anionic terpolymerization of styrene and two categories of 1,1-diphenylethylene (DPE) derivatives. Polym Chem 2020. [DOI: 10.1039/d0py00731e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In living anionic polymerization, gradient, block and random sequences of two categories of DPE derivatives were easily generated by implementing different feed strategies and screening the DPE derivative pairs with different reactivities.
Collapse
Affiliation(s)
- Lincan Yang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Heyu Shen
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Li Han
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Hongwei Ma
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Chao Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Lan Lei
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Songbo Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Pibo Liu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
14
|
Ma Q, Leng X, Han L, Liu P, Li C, Zhang S, Lei L, Ma H, Li Y. Regulation of cis and trans microstructures of isoprene units in alternating copolymers via “space-limited” living species in anionic polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00259c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Space-limited living species provide new insight into the regulation of the microstructure of isoprene units in alternating copolymers composed of isoprene and 1,1-bis(4-dimethylsilylphenyl)ethylene (DPE-2SiH).
Collapse
Affiliation(s)
- Qingchi Ma
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Xuefei Leng
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Li Han
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Pibo Liu
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arab
| | - Chao Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Songbo Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Lan Lei
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Hongwei Ma
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
15
|
Ma Q, Han L, Ma H, Liu P, Shen H, Yang L, Li C, Hao X, Li Y. Investigation of the features of alternating copolymerization of 1,1-bis(4-dimethylsilylphenyl)ethylene and isoprene modified with additive. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Living anionic copolymerization of DPE derivatives containing alkynyl with controlled kinetic behaviors and monomer sequence. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Bai H, Han L, Ma H, Yang L, Li C, Liu P, Shen H, Lei L, Zhang S. Investigation on the alternating and gradient anionic copolymerization of 4-methylenethiochromane (META) and isoprene modified with additives. Polym J 2019. [DOI: 10.1038/s41428-019-0273-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Zhang Y, Han L, Ma H, Yang L, Liu P, Shen H, Li C, Li Y. The investigation on synthesis of periodic polymers with 1,1-diphenylethylene (DPE) derivatives via living anionic polymerization. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Hayashi K, Kanazawa A, Aoshima S. Exceptional copolymerizability of o-phthalaldehyde in cationic copolymerization with vinyl monomers. Polym Chem 2019. [DOI: 10.1039/c9py00547a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
o-Phthalaldehyde is copolymerized via the unique active species, which allows the controlled copolymerization with alkyl vinyl ethers, alternating copolymerization, and copolymerization with sterically hindered nonhomopolymerizable vinyl monomers.
Collapse
Affiliation(s)
- Keisuke Hayashi
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
20
|
Bai H, Zhang Z, Ma H, Han L, Mu X, Huang W, Liu P, Wu Y. Investigation of the features in living anionic polymerization with styrene derivatives containing annular substituents. Polym Chem 2019. [DOI: 10.1039/c8py01825a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Five styrene derivatives with annular substituents (SAs), called CPBE, CHBE, THNE, THBE and META, were successfully synthesized and living anionic polymerization was conducted.
Collapse
Affiliation(s)
- Hongyuan Bai
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Zhi Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Hongwei Ma
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Li Han
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Xiaochun Mu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Wei Huang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Pibo Liu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yibo Wu
- Beijing Inst. Petrochem Technol
- Beijing Key Lab of Special Elastomer Composite Mat
- Beijing 102617
- China
| |
Collapse
|
21
|
Goseki R, Zhang F, Takahata K, Uchida S, Ishizone T. Synthesis of a well-defined alternating copolymer of 1,1-diphenylethylene and tert-butyldimethylsilyloxymethyl substituted styrene by anionic copolymerization: toward tailored graft copolymers with controlled side chain densities. Polym Chem 2019. [DOI: 10.1039/c9py01161g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Well-defined alternating copolymers comprising 1,1-diphenylethylene (DPE) and styrene derivative having sterically bulky tert-butyldimethylsilyloxymethyl group at the meta position (St-TBS) were successfully synthesized.
Collapse
Affiliation(s)
- Raita Goseki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Fan Zhang
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Kazuki Takahata
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Satoshi Uchida
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
22
|
Pu X, He J. A fast semi-continuous anionic process for fluorene-functionalized homo and block oligomers with uniform molecular weights. Polym Chem 2019. [DOI: 10.1039/c8py01340c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A semi-continuous strategy based on anionic reactions was developed for the step-by-step synthesis of oligomers with uniform molecular weights.
Collapse
Affiliation(s)
- Xinming Pu
- The State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Junpo He
- The State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| |
Collapse
|
23
|
Yang LC, Han L, Ma HW, Liu PB, Shen HY, Li C, Zhang SB, Li Y. Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2203-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Liu P, Ma H, Han L, Shen H, Yang L, Li C, Hao X, Li Y. Investigation of the Locked-Unlocked Mechanism in Living Anionic Polymerization Realized with 1-(Tri-isopropoxymethylsilylphenyl)-1-phenylethylene. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pibo Liu
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Li Han
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Chao Li
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
25
|
Liu P, Ma H, Han L, Shen H, Yang L, Li C, Hao X, Li Y. Investigation of the Locked-Unlocked Mechanism in Living Anionic Polymerization Realized with 1-(Tri-isopropoxymethylsilylphenyl)-1-phenylethylene. Angew Chem Int Ed Engl 2018; 57:16538-16543. [DOI: 10.1002/anie.201809857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Pibo Liu
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Li Han
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Chao Li
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals; Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
26
|
Hutchings LR, Brooks PP, Shaw P, Ross‐Gardner P. Fire and Forget! One‐Shot Synthesis and Characterization of Block‐Like Statistical Terpolymers via Living Anionic Polymerization. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lian R. Hutchings
- Durham Centre for Soft Matter, Department of ChemistryDurham University Durham DH1 3LE United Kingdom
| | - Paul P. Brooks
- Durham Centre for Soft Matter, Department of ChemistryDurham University Durham DH1 3LE United Kingdom
- Synthomer Central Road, Templefields, Harlow Essex CM20 2BH United Kingdom
| | - Peter Shaw
- Synthomer Central Road, Templefields, Harlow Essex CM20 2BH United Kingdom
| | - Paul Ross‐Gardner
- Synthomer Central Road, Templefields, Harlow Essex CM20 2BH United Kingdom
| |
Collapse
|
27
|
Han L, Zhu S, Ma H, Liu P, Shen H, Yang L, Huang W, Li Y. Assessing the Sequence Specificity in Thermal and Polarized Optical Order of Multiple Sequence-Determined Liquid Crystal Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Siqi Zhu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wei Huang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
28
|
Yang L, Ma H, Han L, Liu P, Shen H, Li C, Li Y. Sequence Features of Sequence-Controlled Polymers Synthesized by 1,1-Diphenylethylene Derivatives with Similar Reactivity during Living Anionic Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01491] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lincan Yang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chao Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
29
|
Liu P, Ma H, Han L, Yang L, Shen H, Li C, Li Y. The effect of amine-functionalized 1,1-diphenylethylene (DPE) derivatives on end-capping reactions and the simulation of their precision for sequence control. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Huang W, Ma H, Han L, Liu P, Yang L, Shen H, Hao X, Li Y. Synchronous Regulation of Periodicity and Monomer Sequence during Living Anionic Copolymerization of Styrene and Dimethyl-[4-(1-phenylvinyl)phenyl]silane (DPE-SiH). Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wei Huang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
31
|
Yang L, Ma H, Han L, Hao X, Liu P, Shen H, Li Y. Synthesis of a sequence-controlled in-chain alkynyl/tertiary amino dual-functionalized terpolymer via living anionic polymerization. Polym Chem 2018. [DOI: 10.1039/c7py01837a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-functionalized sequence-defined terpolymer was synthesized via living anionic polymerization; meanwhile its kinetic characteristics and sequence structure were investigated in detail via the in situ1H NMR method.
Collapse
Affiliation(s)
- Lincan Yang
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| |
Collapse
|
32
|
Shen H, Ma H, Liu P, Huang W, Han L, Li C, Li Y. Facile Synthesis of In-Chain, Multicomponent, Functionalized Polymers via Living Anionic Copolymerization through the Ugi Four-Component Reaction (Ugi-4CR). Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/25/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Heyu Shen
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Wei Huang
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Li Han
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Chao Li
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
33
|
Liu P, Ma H, Shen H, Han L, Chang S, Zang L, Bian Y, Bai Y, Li Y. Study on the Mechanism of a Side Coupling Reaction during the Living Anionic Copolymerization of Styrene and 1-(Ethoxydimethylsilyphenyl)-1-phenylethylene (DPE-SiOEt). Polymers (Basel) 2017; 9:polym9050171. [PMID: 30970850 PMCID: PMC6432263 DOI: 10.3390/polym9050171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022] Open
Abstract
A 1,1-diphenylethylene (DPE) derivative with an alkoxysilyl group (DPE-SiOEt) was synthesized. It was end-capped with poly(styryl)lithium (PSLi) and then copolymerized with styrene via living anionic polymerization (LAP) in a non-polar solvent at room temperature. The observed side coupling reaction was carefully investigated by end-capping the polymer. Changes in molecular weight support the plausibility of a mechanism involving living anionic species (PSLi or lithiated DPE-end-capped polystyrene, PSDLi) and the alkoxysilyl groups. Through a series of copolymerizations with different feed ratios, the kinetics of the side coupling reaction were also studied. The results showed that the side reactions could be controlled using an excess feed of DPE-SiOEt, a potentially useful strategy for the synthesis and application of well-defined alkoxysilyl-functionalized polymers via LAP.
Collapse
Affiliation(s)
- Pibo Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Li Han
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Shuang Chang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Long Zang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yiyu Bian
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yu Bai
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
34
|
Zhao C, Zheng H, Feng L, Wang Y, Liu Y, Liu B, Djibrine BZ. Improvement of Sludge Dewaterability by Ultrasound-Initiated Cationic Polyacrylamide with Microblock Structure: The Role of Surface-Active Monomers. MATERIALS 2017; 10:ma10030282. [PMID: 28772642 PMCID: PMC5503336 DOI: 10.3390/ma10030282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/25/2022]
Abstract
Cationic polyacrylamides have been employed widely to improve sludge dewatering performance, but the cationic units are randomly distributed in the molecular chain, which restricts the further enhancement of dewaterability. Common template technology to prepare block copolymers requiring a huge number of templates reduces the polymer purity and molecular weight. Here, we adopted the surface-active monomer benzyl dimethyl 2-(methacryloyloxy)ethyl ammonium chloride (BDMDAC) to synthesize cationic microblocky polyacrylamide initiated by ultrasound. The reactivity ratio of monomers suggested that novel cationic monomer BDMDAC had higher homopolymerization ability, and was thus more prone to forming a microblock structure. The statistical analysis of sequence-length distribution indicated that the number and length of cationic segments increased in the PAB molecules. In addition, the characteristic results of Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), and thermogravimetric analysis (TGA) provided evidence for the synthesis of copolymer with cationic microblocks. Finally, the results of dewatering tests demonstrated that sludge dewaterability was greatly improved by adding the synthesized novel flocculants, and the sludge-specific resistance to filtration, filter cake moisture content and residual turbidity all reached a minimum (68.7%, 5.4 × 1012 m·kg−1, and 2.6 NTU, respectively) at 40 mg·L−1. The PAB flocs were large, compact, difficult to break, and easy to regrow. Furthermore, PAB was more effective in the removal of protein from soluble extracellular polymeric substances (SEPSs). In summary, this study provides a novel solution to synthesize cationic microblock polyacrylamide for improving sludge dewatering.
Collapse
Affiliation(s)
- Chuanliang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Li Feng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| | - Yongzhi Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Bingzhi Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Badradine Zakaria Djibrine
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
35
|
Wu Z, Liu P, Liu Y, Wei W, Zhang X, Wang P, Xu Z, Xiong H. Regulating sequence distribution of polyethers via ab initio kinetics control in anionic copolymerization. Polym Chem 2017. [DOI: 10.1039/c7py01073g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Design principles for regulating the sequence distribution of polyethers in anionic copolymerization have been provided through kinetics studies and numerical calculation.
Collapse
Affiliation(s)
- Zhichao Wu
- Department of Polymer Science
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Pei Liu
- School of Mathematical Sciences and Institute of Natural Sciences
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yu Liu
- Department of Polymer Science
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Wei Wei
- Department of Polymer Science
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinlin Zhang
- Department of Polymer Science
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Ping Wang
- Dow Chemical (China) Investment Co
- Ltd
- Shanghai 201203
- P. R. China
| | - Zhenli Xu
- School of Mathematical Sciences and Institute of Natural Sciences
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
- Center for Soft Matter and Interdisciplinary Sciences
| | - Huiming Xiong
- Department of Polymer Science
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
36
|
Liu P, Ma H, Huang W, Han L, Hao X, Shen H, Bai Y, Li Y. Sequence regulation in the living anionic copolymerization of styrene and 1-(4-dimethylaminophenyl)-1-phenylethylene by modification with different additives. Polym Chem 2017. [DOI: 10.1039/c6py02229d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence regulation in the copolymerization of styrene and 1-(4-dimethylaminophenyl)-1-phenylethylene is conveniently achievedviathe modification of additives.
Collapse
Affiliation(s)
- Pibo Liu
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Wei Huang
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yu Bai
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| |
Collapse
|
37
|
Ma H, Han L, Li Y. Sequence Determination and Regulation in the Living Anionic Copolymerization of Styrene and 1,1-Diphenylethylene (DPE) Derivatives. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongwei Ma
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Li Han
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
38
|
Zhang Z, Zheng H, Huang F, Li X, He S, Zhao C. Template Polymerization of a Novel Cationic Polyacrylamide: Sequence Distribution, Characterization, and Flocculation Performance. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengan Zhang
- College
of Resources and Environmental Engineering, Yibin University, Yibin 644000, China
| | | | - Fei Huang
- College
of Resources and Environmental Engineering, Yibin University, Yibin 644000, China
- Key
Laboratory of the Yangtze
River Water Environment, State Ministry of Education, Yibin Research Base, Yibin 400045, China
| | | | - Shengying He
- College
of Resources and Environmental Engineering, Yibin University, Yibin 644000, China
- Key
Laboratory of the Yangtze
River Water Environment, State Ministry of Education, Yibin Research Base, Yibin 400045, China
| | | |
Collapse
|
39
|
Synthesis of chain-end multi-functionalized polyisoprene with a definite number of amino groups via living anionic copolymerization. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Liu P, Ma H, Huang W, Shen H, Wu L, Li Y, Wang Y. The determination of sequence distribution in the living anionic copolymerization of styrene and strong electron-donating DPE derivative-1,1-bis(4-N,N-dimethylanimophenyl)ethylene. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Wang Q, Ma H, Sang W, Han L, Liu P, Shen H, Huang W, Gong X, Yang L, Wang Y, Li Y. Synthesis of sequence-determined bottlebrush polymers based on sequence determination in living anionic copolymerization of styrene and dimethyl(4-(1-phenylvinyl)phenyl)silane. Polym Chem 2016. [DOI: 10.1039/c6py00085a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sequence-determined bottlebrush polymers are precisely, efficiently and conveniently synthesized.
Collapse
|