1
|
Feuerstein A, Rittner T, Boßmann B, Gießelmann ECJ, Schu J, Morgenstern B, Gallei M, Schäfer A. Synthesis and Properties of Symmetrical and Asymmetrical Polyferrocenylmethylenes. Chemistry 2025; 31:e202404283. [PMID: 39715000 DOI: 10.1002/chem.202404283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The synthesis of differently substituted polyferrocenylmethylenes (PFM) via ring-opening transmetalation polymerization (ROTP) is reported. A number of novel, symmetrically and asymmetrically substituted carba[1]magnesocenophanes have been prepared, which were used as precursors and allowed investigations of the influence of different substitution patterns on the PFM polymer properties. The novel carba[1]magnesocenophanes have been fully characterized by 1H and 13C{1H} NMR spectroscopy, and structurally authenticated by single-crystal X-ray diffraction (SC-XRD). The corresponding PFMs were obtained with molecular weights in a range of Mw=1900 g mol-1 up to 15100 g mol-1 and corresponding dispersities of Đ=1.48 to 1.81. All PFMs have been fully characterized by 1H and 13C{1H} NMR spectroscopy, as well as by gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and matrix assisted laser desorption ionization-time-of-flight (MALDI-ToF) mass spectrometry. Pyrolysis of spyrocyclic substituted PFM resulted in a ceramic yield above 50 %, while the obtained residue was characterized by powder X-ray diffraction (PXRD).
Collapse
Affiliation(s)
- Aylin Feuerstein
- Inorganic Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Till Rittner
- Polymer Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Blandine Boßmann
- Polymer Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Elias C J Gießelmann
- Inorganic Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Justin Schu
- Inorganic Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Bernd Morgenstern
- Inorganic Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
- Saarland Center for Energy Materials and Sustainability - Saarene, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - André Schäfer
- Inorganic Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| |
Collapse
|
2
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Feuerstein A, Boßmann B, Rittner T, Leiner R, Janka O, Gallei M, Schäfer A. Polycobaltoceniumylmethylene - A Water-Soluble Polyelectrolyte Prepared by Ring-Opening Transmetalation Polymerization. ACS Macro Lett 2023; 12:1019-1024. [PMID: 37428818 DOI: 10.1021/acsmacrolett.3c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The synthesis of a water-soluble polycobaltoceniumylmethylene chloride (PCM-Cl) via ring-opening transmetalation polymerization is presented. Starting from a carba[1]magnesocenophane and cobalt(II) chloride, this route gives access to a polymer with methylene-bridged cobaltocenium moieties within the polymers' main-chain. The polymer was characterized by NMR spectroscopy, elemental analysis, TGA, DSC, XRD, and CV measurements, as well as UV-vis spectroscopy. Furthermore, GPC measurements in an aqueous eluent versus pullulan standards were conducted to gain insight into the obtained molar masses and distributions. In addition, the ion-dependent solubility was demonstrated by anion exchange, tuning the hydrophobic/hydrophilic properties of this redox-responsive material.
Collapse
Affiliation(s)
- Aylin Feuerstein
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Blandine Boßmann
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Till Rittner
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Regina Leiner
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Oliver Janka
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - André Schäfer
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
|
6
|
Winter T, Haider W, Schießer A, Presser V, Gallei M, Schäfer A. Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene. Macromol Rapid Commun 2021; 42:e2000738. [PMID: 33554420 DOI: 10.1002/marc.202000738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2 C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol-1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented.
Collapse
Affiliation(s)
- Tamara Winter
- Ernst-Berl-Institute of Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany.,Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany.,Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany
| | - Wasim Haider
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Alexander Schießer
- Mass Spectrometry, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Volker Presser
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany.,INM - Leibniz-Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Markus Gallei
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - André Schäfer
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
7
|
Ruan Z, Li Z. Recent progress of magnetic nanomaterials from cobalt-containing organometallic polymer precursors. Polym Chem 2020. [DOI: 10.1039/c9py01517e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the recent progress in the syntheses and materials applications of Co-containing organometallic polymers, and mainly focuses on the preparation of magnetic nanostructures from Co-containing organometallic polymer precursors.
Collapse
Affiliation(s)
- Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials
- College of Chemistry and Chemical Engineering
- Huanggang Normal University
- Huanggang 438000
- China
| | - Zhen Li
- Sauvage Center for Molecular Sciences
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
8
|
Wilson BJ, Brantley JN. Synthesis and Reactivity of Metallocarbene-Containing Polymers. J Am Chem Soc 2019; 141:12453-12457. [PMID: 31348854 DOI: 10.1021/jacs.9b04077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metallopolymers are an emerging class of materials with potential utility as semiconductors, catalysts, optical device components, and stimuli responsive networks. While polymer frameworks have been decorated with an array of organometallic moieties, the incorporation of metallocarbenes has been largely overlooked. Here, we report ring-opening metathesis polymerization as a strategy for the synthesis of Fischer carbene-containing polymers. High degrees of polymerization were observed (>800 repeats), and the isolated materials exhibited exceptional solubility and thermal stability. The tungsten carbene subunits were readily incorporated into block copolymers and could be modified through subsequent transformations. Moreover, the metallocarbene polymers were found to release carbon monoxide upon exposure to light or oxygen, which is unusual for tungsten carbene complexes. These metallocarbene-containing polymers could represent new platforms for the development of functional materials.
Collapse
Affiliation(s)
- Breana J Wilson
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Johnathan N Brantley
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
9
|
Yiu SC, Nunns A, Ho CL, Ngai JHL, Meng Z, Li G, Gwyther J, Whittell GR, Manners I, Wong WY. Nanostructured Bimetallic Block Copolymers as Precursors to Magnetic FePt Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sze-Chun Yiu
- School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | - Adam Nunns
- School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
| | - Cheuk-Lam Ho
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | - Jenner Ho-Loong Ngai
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | - Zhengong Meng
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | | | - Jessica Gwyther
- School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
| | | | - Ian Manners
- School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Wai-Yeung Wong
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| |
Collapse
|
10
|
Rüttiger C, Gemmer L, Schöttner S, Kuttich B, Stühn B, Gallei M. Preparation and self-assembly of polyferrocenyldimethylsilane-containing tri- and pentablock terpolymers. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Hailes RLN, Musgrave RA, Kilpatrick AFR, Russell AD, Whittell GR, O'Hare D, Manners I. Ring-Opening Polymerisation of Low-Strain Nickelocenophanes: Synthesis and Magnetic Properties of Polynickelocenes with Carbon and Silicon Main Chain Spacers. Chemistry 2019; 25:1044-1054. [PMID: 30304580 DOI: 10.1002/chem.201804326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 11/09/2022]
Abstract
Polymetallocenes based on ferrocene, and to a lesser extent cobaltocene, have been well-studied, whereas analogous systems based on nickelocene are virtually unexplored. It has been previously shown that poly(nickelocenylpropylene) [Ni(η5 -C5 H4 )2 (CH2 )3 ]n is formed as a mixture of cyclic (6x ) and linear (7) components by the reversible ring-opening polymerisation (ROP) of tricarba[3]nickelocenophane [Ni(η5 -C5 H4 )2 (CH2 )3 ] (5). Herein the generality of this approach to main-chain polynickelocenes is demonstrated and the ROP of tetracarba[4]nickelocenophane [Ni(η5 -C5 H4 )2 (CH2 )4 ] (8), and disila[2]nickelocenophane [Ni(η5 -C5 H4 )2 (SiMe2 )2 ] (12) is described, to yield predominantly insoluble homopolymers poly(nickelocenylbutylene) [Ni(η5 -C5 H4 )2 (CH2 )4 ]n (13) and poly(tetramethyldisilylnickelocene) [Ni(η5 -C5 H4 )2 (SiMe2 )2 ]n (14), respectively. The ROP of 8 and 12 was also found to be reversible at elevated temperature. To access soluble high molar mass materials, copolymerisations of 5, 8, and 12 were performed. Superconducting quantum interference device (SQUID) magnetometry measurements of 13 and 14 indicated that these homopolymers behave as simple paramagnets at temperatures greater than 50 K, with significant antiferromagnetic coupling that is notably larger in carbon-bridged 6x /7 and 13 compared to the disilyl-bridged 14. However, the behaviour of these polynickelocenes deviates substantially from the Curie-Weiss law at low temperatures due to considerable zero-field splitting.
Collapse
Affiliation(s)
| | | | - Alexander F R Kilpatrick
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Andrew D Russell
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| |
Collapse
|
12
|
Rüttiger C, Hübner H, Schöttner S, Winter T, Cherkashinin G, Kuttich B, Stühn B, Gallei M. Metallopolymer-Based Block Copolymers for the Preparation of Porous and Redox-Responsive Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4018-4030. [PMID: 29313330 DOI: 10.1021/acsami.7b18014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metallopolymers are a unique class of functional materials because of their redox-mediated optoelectronic and catalytic switching capabilities and, as recently shown, their outstanding structure formation and separation capabilities. Within the present study, (tri)block copolymers of poly(isoprene) (PI) and poly(ferrocenylmethyl methacrylate) having different block compositions and overall molar masses up to 328 kg mol-1 are synthesized by anionic polymerization. The composition and thermal properties of the metallopolymers are investigated by state-of-the-art polymer analytical methods comprising size exclusion chromatography, 1H NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. As a focus of this work, excellent microphase separation of the synthesized (tri)block copolymers is proven by transmission electron microscopy, scanning electron microcopy, energy-dispersive X-ray spectroscopy, small-angle X-ray scattering measurements showing spherical, cylindrical, and lamellae morphologies. As a highlight, the PI domains are subjected to ozonolysis for selective domain removal while maintaining the block copolymer morphology. In addition, the novel metalloblock copolymers can undergo microphase separation on cellulose-based substrates, again preserving the domain order after ozonolysis. The resulting nanoporous structures reveal an intriguing switching capability after oxidation, which is of interest for controlling the size and polarity of the nanoporous architecture.
Collapse
Affiliation(s)
- Christian Rüttiger
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Hanna Hübner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Sebastian Schöttner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Tamara Winter
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Gennady Cherkashinin
- Surface Science Group, Institute of Materials Science, Technische Universität Darmstadt , Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany
| | - Björn Kuttich
- Institute of Condensed Matter Physics, Technische Universität Darmstadt , Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics, Technische Universität Darmstadt , Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
13
|
Gallei M. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700648] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/08/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
14
|
Appold M, Rüttiger C, Kuttich B, Stühn B, Gallei M. Polyvinylpyridine-Grafted Block Copolymers by an Iterative All-Anionic Polymerization Strategy. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Appold
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Björn Kuttich
- Institute of Condensed Matter Physics; Technische Universität Darmstadt; Hochschulstraße 6 64289 Darmstadt Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics; Technische Universität Darmstadt; Hochschulstraße 6 64289 Darmstadt Germany
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
15
|
Surface-initiated atom transfer radical polymerization of electrochemically responsive cobalt-methacrylates. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Metallomacromolecules containing cobalt sandwich complexes: Synthesis and functional materials properties. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Su X, Hatton TA. Electrosorption at functional interfaces: from molecular-level interactions to electrochemical cell design. Phys Chem Chem Phys 2017; 19:23570-23584. [DOI: 10.1039/c7cp02822a] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This perspective discusses the fundamental processes behind electrosorption at charged interfaces, and highlights advances in electrode design for sustainable technologies in water purification and ion-selective separations.
Collapse
Affiliation(s)
- Xiao Su
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- United States
| | - T. Alan Hatton
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- United States
| |
Collapse
|
18
|
Appold M, Mari C, Lederle C, Elbert J, Schmidt C, Ott I, Stühn B, Gasser G, Gallei M. Multi-stimuli responsive block copolymers as a smart release platform for a polypyridyl ruthenium complex. Polym Chem 2017. [DOI: 10.1039/c6py02026g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient protocol for the preparation of poly(N,N-dimethylaminoethyl methacrylate)(PDMAEMA)-based multi-stimuli responsive block copolymers (BCPs) with poly(methyl methacrylate) (PMMA)viaanionic polymerization protocols is presented.
Collapse
Affiliation(s)
- Michael Appold
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Cristina Mari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Christina Lederle
- Institute of Condensed Matter Physics
- Technische Universität Darmstadt
- D-64289 Darmstadt
- Germany
| | - Johannes Elbert
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics
- Technische Universität Darmstadt
- D-64289 Darmstadt
- Germany
| | - Gilles Gasser
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| |
Collapse
|
19
|
Abd-El-Aziz AS, Agatemor C, Etkin N, Bissessur R. Tunable room-temperature soft ferromagnetism in magnetoceramics of organometallic dendrimers. JOURNAL OF MATERIALS CHEMISTRY C 2017; 5:2268-2281. [DOI: 10.1039/c7tc00105c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This article represents an introduction of new dendrimeric precursors to magnetic ceramics, and homometallic and heterometallic dendrimers with tunable magnetic properties.
Collapse
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry
- University of Prince Edward Island
- Charlottetown
- Canada
| | - Christian Agatemor
- Department of Chemistry
- University of Prince Edward Island
- Charlottetown
- Canada
| | - Nola Etkin
- Department of Chemistry
- University of Prince Edward Island
- Charlottetown
- Canada
| | - Rabin Bissessur
- Department of Chemistry
- University of Prince Edward Island
- Charlottetown
- Canada
| |
Collapse
|
20
|
Schöttner S, Schaffrath HJ, Gallei M. Poly(2-hydroxyethyl methacrylate)-Based Amphiphilic Block Copolymers for High Water Flux Membranes and Ceramic Templates. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01803] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sebastian Schöttner
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Heinz-Joachim Schaffrath
- Paper
Technology and Mechanical Process Engineering, Technische Universität Darmstadt, Alexander-Str. 8, D-64283 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
21
|
Scheid D, von der Lühe M, Gallei M. Synthesis of Breathing Metallopolymer Hollow Spheres for Redox-Controlled Release. Macromol Rapid Commun 2016; 37:1573-1580. [PMID: 27491362 DOI: 10.1002/marc.201600338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/01/2016] [Indexed: 12/23/2022]
Abstract
A convenient synthetic approach for the preparation of uniform metallopolymer-containing hollow spheres based on 2-(methacryloyloxy)ethyl ferrocenecarboxylate (FcMA) as monomer by sequential starved feed emulsion polymerization is described. Core/shell particles consisting of a noncrosslinked poly(methyl methacrylate) core and a slightly crosslinked ferrocene-containing shell allows for the simple dissolution of core material and, thus, monodisperse metallopolymer hollow spheres are obtained. Since PFcMA is incorporated in the particle shell, herein investigated hollow spheres can be addressed by external triggers, i.e., solvent variation and redox chemistry in order to change the particle swelling capability. PFcMA-containing core/shell particles and hollow spheres are characterized by transmission electron microscope (TEM), scanning electron microscopy, cryogenic TEM, thermogravimetric analysis, and dynamic light scattering in terms of size, size distribution, hollow sphere character, redox-responsiveness, and composition. Moreover, the general suitability of prepared stimulus-responsive nanocapsules for the use in catch-release systems is demonstrated by loading the nanocapsules with malachite green as model payload followed by release studies.
Collapse
Affiliation(s)
- Daniel Scheid
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Moritz von der Lühe
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldstr. 10, 07743, Jena, Germany
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| |
Collapse
|
22
|
Rüttiger C, Mehlhase S, Vowinkel S, Cherkashinin G, Liu N, Dietz C, Stark RW, Biesalski M, Gallei M. Redox-mediated flux control in functional paper. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Rüttiger C, Appold M, Didzoleit H, Eils A, Dietz C, Stark RW, Stühn B, Gallei M. Structure Formation of Metallopolymer-Grafted Block Copolymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Christian Rüttiger
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Michael Appold
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Haiko Didzoleit
- Institute
of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Adjana Eils
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Christian Dietz
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Robert W. Stark
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Bernd Stühn
- Institute
of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
24
|
Zhao Y, He L, Qin S, Tao GH. Tunable luminescence of lanthanide (Ln = Sm, Eu, Tb) hydrophilic ionic polymers based on poly(N-methyl-4-vinylpyridinium-co-styrene) cations. Polym Chem 2016. [DOI: 10.1039/c6py01472k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrophilic luminescent lanthanide-containing ionic polymers poly-[MVPS]2[Ln(NO3)5] were prepared, which can be utilized as reversible colorimetric water-responsive sensors.
Collapse
Affiliation(s)
- Ying Zhao
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Ling He
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Song Qin
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Guo-Hong Tao
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|