1
|
The Design of Abnormal Microenvironment Responsive MRI Nanoprobe and Its Application. Int J Mol Sci 2021; 22:ijms22105147. [PMID: 34067989 PMCID: PMC8152268 DOI: 10.3390/ijms22105147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Magnetic resonance imaging (MRI) is often used to diagnose diseases due to its high spatial, temporal and soft tissue resolution. Frequently, probes or contrast agents are used to enhance the contrast in MRI to improve diagnostic accuracy. With the development of molecular imaging techniques, molecular MRI can be used to obtain 3D anatomical structure, physiology, pathology, and other relevant information regarding the lesion, which can provide an important reference for the accurate diagnosis and treatment of the disease in the early stages. Among existing contrast agents, smart or activatable nanoprobes can respond to selective stimuli, such as proving the presence of acidic pH, active enzymes, or reducing environments. The recently developed environment-responsive or smart MRI nanoprobes can specifically target cells based on differences in the cellular environment and improve the contrast between diseased tissues and normal tissues. Here, we review the design and application of these environment-responsive MRI nanoprobes.
Collapse
|
2
|
Agnihotri P, Raj R, Kumar D, Dan A. Short oligo(ethylene glycol) chain incorporated thermoresponsive microgels: from structural analysis to modulation of solution properties. SOFT MATTER 2020; 16:7845-7859. [PMID: 32756713 DOI: 10.1039/d0sm01187h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report synthesis of thermoresponsive poly(N-isopropylaccrylamide) (PNIPAM) microgels with short oligo(ethylene glycol) (OEG) chain comonomers (1 to 4/5 repeating unit) by surfactant-free precipitation copolymerization. The efficient incorporation of the comonomers was confirmed by a complete set of characterization methods viz., FTIR, 1H NMR, TEM, DLS, and viscometry. The structural heterogeneity and the distribution of the comonomers within the microgels were determined by means of 1H high-resolution transverse relaxation magnetization measurements. Interestingly, the incorporation of these short OEG chain comonomers led to the formation of a core-corona structure, in which the comonomers were mainly located in the core of the polymeric network with PNIPAM dangling chains at the microgel periphery. The experimental investigations of deswelling behaviours revealed that the OEG chains allowed precise control over the colloidal properties, including phase transition, particles size, swelling degree and polydispersity of the microgels. The tuneability of these properties that was interpreted in terms of polymeric hydrophobic/hydrophilic balance as well as structural diversity, could be achieved by changing the OEG chain length, comonomer feed and crosslinking density. Further, we found that the microgels with more hydrophilic OEG chains were able to show a higher relative swelling, and the same solid content thus led to a higher viscosity at all temperatures. The OEG chains remarkably improved the colloidal stability of the microgels in electrolyte solutions even at higher temperatures, thereby paving the way for the use of these microgels in a range of applications.
Collapse
Affiliation(s)
- Priyanshi Agnihotri
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| |
Collapse
|
3
|
Couturaud B, Houston ZH, Cowin GJ, Prokeš I, Foster JC, Thurecht KJ, O’Reilly RK. Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Lett 2019; 8:1479-1483. [PMID: 35651191 DOI: 10.1021/acsmacrolett.9b00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A water-soluble fluorine magnetic resonance spectroscopy host-guest probe, P(HPA-co-AdamCF3A), was successfully constructed from the facile synthesis of a bifunctional monomer via a quantitative Passerini reaction. Supramolecular complexation with (2-hydroxypropyl)-β-cyclodextrin promoted a change in the chemical environment, leading to modulation of both the relaxation properties as well as chemical shift of the fluorine moieties. This change was used to probe the supramolecular interaction by 19F MRI spectroscopy and give insight into fluorine probe formulation. This work provides a fundamental basis for an 19F MR imaging tracer capable of assessing host-guest inclusion and a potential model to follow the fate of a drug delivery system in vivo.
Collapse
Affiliation(s)
- Benoit Couturaud
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
- Université Paris-Est, East Paris Institute of Chemistry & Materials Science (ICMPE), UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320 Thiais, France
| | - Zachary H. Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gary J. Cowin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ivan Prokeš
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| |
Collapse
|
4
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
5
|
Liu X, Yuan Y, Bo S, Li Y, Yang Z, Zhou X, Chen S, Jiang ZX. Monitoring Fluorinated Dendrimer-Based Self-Assembled Drug-Delivery Systems with 19
F Magnetic Resonance. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xin Liu
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
| | - Yaping Yuan
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; 430071 Wuhan China
| | - Shaowei Bo
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
| | - Yu Li
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; 430071 Wuhan China
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; 430071 Wuhan China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; Dong Hua University; 201620 Shanghai China
| |
Collapse
|
6
|
Ardana A, Whittaker AK, Thurecht KJ. Synthesis and post-polymerisation ligations of PEG-based hyperbranched polymers for RNA conjugation via reversible disulfide linkage. Macromol Res 2017. [DOI: 10.1007/s13233-017-5111-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Fuchs AV, Bapat AP, Cowin GJ, Thurecht KJ. Switchable 19F MRI polymer theranostics: towards in situ quantifiable drug release. Polym Chem 2017. [DOI: 10.1039/c7py00345e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A switchable polymeric 19F magnetic resonance imaging (MRI) contrast agent was synthesised whereby the transverse (T2) relaxation times increased as a therapeutic was released from a hyperbranched polymer (HBP) scaffold.
Collapse
Affiliation(s)
- A. V. Fuchs
- Australian Institute of Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
- Centre for Advanced Imaging
| | - A. P. Bapat
- Centre for Advanced Imaging
- University of Queensland
- Brisbane
- Australia
| | - G. J. Cowin
- Centre for Advanced Imaging
- University of Queensland
- Brisbane
- Australia
| | - K. J. Thurecht
- Australian Institute of Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
- Centre for Advanced Imaging
| |
Collapse
|