1
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Qiu Z, Deng H, Neumann CN. Site-Isolated Rhodium(II) Metalloradicals Catalyze Olefin Hydrofunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401375. [PMID: 38314637 DOI: 10.1002/anie.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Rh(II) porphyrin complexes display pronounced metal-centered radical character and the ability to activate small molecules under mild conditions, but catalysis with Rh(II) porphyrins is extremely rare. In addition to facile dimerization, Rh(II) porphyrins readily engage in kinetically and thermodynamically facile reactions involving two Rh(II) centers to generate stable Rh(III)-X intermediates that obstruct turnover in thermal catalysis. Here we report site isolation of Rh(II) metalloradicals in a MOF host, which not only protects Rh(II) metalloradicals against dimerization, but also allows them to participate in thermal catalysis. Access to PCN-224 or PCN-222 in which the porphyrin linkers are fully metalated by Rh(II) in the absence of any accompanying Rh(0) nanoparticles was achieved via the first direct MOF synthesis with a linker containing a transition-metal alkyl moiety, followed by Rh(III)-C bond photolysis.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hao Deng
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Yan G. Photochemical and Electrochemical Strategies for Hydrodefluorination of Fluorinated Organic Compounds. Chemistry 2022; 28:e202200231. [PMID: 35301767 DOI: 10.1002/chem.202200231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Hydrodefluorination (HDF) is a very important fundamental transformation for conversion of the C-F bond into the C-H bond in organic synthesis. In the past decade, much progress has been achieved with HDF through the utility of low-valent metals, transition-metal complexes and main-group Lewis acids. Recently, novel methods have been introduced for this purpose through photo- and electrochemical pathways, which are of great significance, due to their considerable environmental and economical advantages. This Review highlights the HDF of fluorinated organic compounds (FOCs) through photo- and electrochemical strategies, along with mechanistic insights.
Collapse
Affiliation(s)
- Guobing Yan
- Department of Chemistry, College of Jiyang, Zhejiang A&F University, Zhuji, Zhejiang, 311800, P. R. China
| |
Collapse
|
4
|
Yatabe T, Futakuchi S, Miyazawa K, Shimauchi D, Takahashi Y, Yoon KS, Nakai H, Ogo S. Reductive C(sp 3)-C(sp 3) homo-coupling of benzyl or allyl halides with H 2 using a water-soluble electron storage catalyst. RSC Adv 2021; 11:39450-39454. [PMID: 35492457 PMCID: PMC9044531 DOI: 10.1039/d1ra08596d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
This paper reports the first example of a reductive C(sp3)-C(sp3) homo-coupling of benzyl/allyl halides in aqueous solution by using H2 as an electron source {turnover numbers (TONs) = 0.5-2.3 for 12 h}. This homo-coupling reaction, promoted by visible light, is catalysed by a water-soluble electron storage catalyst (ESC). The reaction mechanism, and four requirements to make it possible, are also described.
Collapse
Affiliation(s)
- Takeshi Yatabe
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Small Molecule Energy, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Sayaka Futakuchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Keishi Miyazawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Daiki Shimauchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yukina Takahashi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Small Molecule Energy, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hidetaka Nakai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Small Molecule Energy, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
5
|
Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat Catal 2020. [DOI: 10.1038/s41929-020-0466-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Costa E Silva R, Oliveira da Silva L, de Andrade Bartolomeu A, Brocksom TJ, de Oliveira KT. Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches. Beilstein J Org Chem 2020; 16:917-955. [PMID: 32461773 PMCID: PMC7214915 DOI: 10.3762/bjoc.16.83] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
In this review we present relevant and recent applications of porphyrin derivatives as photocatalysts in organic synthesis, involving both single electron transfer (SET) and energy transfer (ET) mechanistic approaches. We demonstrate that these highly conjugated photosensitizers show increasing potential in photocatalysis since they combine both photo- and electrochemical properties which can substitute available metalloorganic photocatalysts. Batch and continuous-flow approaches are presented highlighting the relevance of enabling technologies for the renewal of porphyrin applications in photocatalysis. Finally, the reaction scale in which the methodologies were developed are highlighted since this is an important parameter in the authors' opinion.
Collapse
Affiliation(s)
- Rodrigo Costa E Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Luely Oliveira da Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.,Departamento de Ciências Naturais, Universidade do Estado do Pará, Marabá, PA, 68502-100, Brazil
| | | | - Timothy John Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | |
Collapse
|
7
|
Gair JJ, Grey RL, Giroux S, Brodney MA. Palladium Catalyzed Hydrodefluorination of Fluoro-(hetero)arenes. Org Lett 2019; 21:2482-2487. [DOI: 10.1021/acs.orglett.9b00889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Joseph J. Gair
- Vertex Pharmaceuticals Inc, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Ronald L. Grey
- Vertex Pharmaceuticals Inc, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Simon Giroux
- Vertex Pharmaceuticals Inc, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Michael A. Brodney
- Vertex Pharmaceuticals Inc, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
8
|
Borodkin GI, Shubin VG. Progress and prospects in the use of photocatalysis for the synthesis of organofluorine compounds. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Data on the synthesis of fluorinated organic compounds by photocatalysis are systematically considered and analyzed. The attention is focused on the mechanisms of photocatalytic reactions and the selectivity problem.
The bibliography includes 173 references.
Collapse
|
9
|
Yang W, Chen C, Chan KS. Hydrodebromination of allylic and benzylic bromides with water catalyzed by a rhodium porphyrin complex. Dalton Trans 2018; 47:12879-12883. [PMID: 30168570 DOI: 10.1039/c8dt02168f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrodebromination of allylic and benzylic bromides was successfully achieved by a rhodium porphyrin complex catalyst using water as the hydrogen source without a sacrificial reductant. Mechanistic investigations suggest that bromine atom abstraction via a rhodium porphyrin metalloradical operates to give the rhodium porphyrin alkyl species and the subsequent hydrolysis of the rhodium porphyrin alkyl species to a hydrocarbon product is a key step to harness the hydrogen from water.
Collapse
Affiliation(s)
- Wu Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| | | | | |
Collapse
|
10
|
Matsunami A, Kayaki Y, Kuwata S, Ikariya T. Nucleophilic Aromatic Substitution in Hydrodefluorination Exemplified by Hydridoiridium(III) Complexes with Fluorinated Phenylsulfonyl-1,2-diphenylethylenediamine Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Asuka Matsunami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Shigeki Kuwata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takao Ikariya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
11
|
Zhang J, Zhang W, Xu M, Zhang Y, Fu X, Fang H. Production of Formamides from CO and Amines Induced by Porphyrin Rhodium(II) Metalloradical. J Am Chem Soc 2018; 140:6656-6660. [DOI: 10.1021/jacs.8b03029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiajing Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wentao Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Minghui Xu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuefeng Fu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huayi Fang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Thompson SJ, Brennan MR, Lee SY, Dong G. Synthesis and applications of rhodium porphyrin complexes. Chem Soc Rev 2018; 47:929-981. [DOI: 10.1039/c7cs00582b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A review on rhodium porphyrin chemistry, ranging from synthesis and properties to reactivity and application.
Collapse
Affiliation(s)
| | | | - Siu Yin Lee
- Department of Chemistry, University of Chicago
- Chicago
- USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago
- Chicago
- USA
| |
Collapse
|
13
|
Dai P, Ma J, Huang W, Chen W, Wu N, Wu S, Li Y, Cheng X, Tan R. Photoredox C–F Quaternary Annulation Catalyzed by a Strongly Reducing Iridium Species. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Dai
- Institute
of Functional Biomolecules, State Key Laboratory of Pharmaceutical
Biotechnology, Nanjing University, Nanjing 210023, China
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, China
| | - Junyu Ma
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, China
| | - Wenhao Huang
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, China
| | - Wenxin Chen
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, China
| | - Na Wu
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, China
| | - Shengfu Wu
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, China
| | - Ying Li
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, China
| | - Xu Cheng
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, China
- State
Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Renxiang Tan
- Institute
of Functional Biomolecules, State Key Laboratory of Pharmaceutical
Biotechnology, Nanjing University, Nanjing 210023, China
- State
Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
14
|
Liu X, Wang Z, Fu X. Light induced catalytic intramolecular hydrofunctionalization of allylphenols mediated by porphyrin rhodium(iii) complexes. Dalton Trans 2016; 45:13308-10. [PMID: 27482840 DOI: 10.1039/c6dt01653g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic intramolecular hydrofunctionalization of allylphenols to heterocyclic compounds mediated by rhodium(iii) porphyrin complexes was described. The Wacker-type intermediate β-heterocyclic alkyl rhodium complex was independently synthesized and crystallized.
Collapse
Affiliation(s)
- Xu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare EarthMaterials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | | | | |
Collapse
|