1
|
Tian Y, Zheng L, Guo D, Miao Y, Li L, Fu W, Li Z. Photopromoted Free Radical Silylation of 2-Aryl-2 H-indazoles with Silanes. J Org Chem 2023; 88:16671-16678. [PMID: 37968942 DOI: 10.1021/acs.joc.3c02232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Photoinduced silylation of silanes with 2-aryl-2H-indazoles was developed under mild conditions, which could efficiently result in diverse 3-silylated 2H-indazoles with good substrate scopes. A series of scaled-up to gram level and radical capture operations were performed in this system. Meanwhile, a bioactive molecule was tolerated well under typical conditions.
Collapse
Affiliation(s)
- Yunfei Tian
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Luping Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Dongyu Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, and Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Yuyan Miao
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, and Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, and Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
2
|
Chen F, Liu L, Zeng W. Synthetic strategies to access silacycles. Front Chem 2023; 11:1200494. [PMID: 37398981 PMCID: PMC10313416 DOI: 10.3389/fchem.2023.1200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
In comparison with all-carbon parent compounds, the incorporation of Si-element into carboskeletons generally endows the corresponding sila-analogues with unique biological activity and physical-chemical properties. Silacycles have recently shown promising application potential in biological chemistry, pharmaceuticals industry, and material chemistry. Therefore, the development of efficient methodology to assemble versatile silacycles has aroused increasing concerns in the past decades. In this review, recent advances in the synthesis of silacycle-system are briefly summarized, including transition metal-catalytic and photocatalytic strategies by employing arylsilanes, alkylsilane, vinylsilane, hydrosilanes, and alkynylsilanes, etc. as starting materials. Moreover, a clear presentation and understanding of the mechanistic aspects and features of these developed reaction methodologies have been high-lighted.
Collapse
|
3
|
Takemura N, Sumida Y, Ohmiya H. Organic Photoredox-Catalyzed Silyl Radical Generation from Silylboronate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Naho Takemura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
4
|
Chen F, Zheng Y, Yang H, Yang Q, Wu L, Zhou N. Iron‐Catalyzed Silylation and Spirocyclization of Biaryl‐Ynones: A Radical Cascade Process toward Silylated Spiro[5.5]trienones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Hao Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Qing‐Yun Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Lu‐Yan Wu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
5
|
Ghosh S, Hajra A. Visible-light-mediated metal-free C–Si bond formation reactions. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Conserving the environment is one of the most imperative goals in recent days among the chemists throughout the world. Swiftly increasing the environmental awareness also increases the demand to build new approaches for synthesizing the same active molecules with zero-waste and pollution. In this background, visible-light-mediated synthesis and functionalization of diverse organic compounds has been established as a tremendously successful topic and has achieved a remarkable stage of superiority and efficiency in the last 20 years. Alternatively, organosilicon derivatives are gradually aspiring leaves among chemists because of their significant application on synthetic, medicinal, and material chemistry. In this scenario, the addition of Si–H group to carbon−carbon multiple bonds (alkenes, hetero-arenes, alkynes, allenes, carboxylic acids, enynes, and dienes) provides an extremely step- and atom-efficient method to obtain silicon-containing compounds. Several attempts for the development of mild, robust, and efficient green protocol were taken in the last two decades. In spite of substantial advancement/research on C–Si bond formation using transition metal catalysis, a green and metal-free approach is highly essential considering its application in the field of medicine and with respect to environmental aspects as well. In this article, we will summarize the reports considering suitable visible-light-mediated metal-free silylation of C–C multiple bonds that includes alkenes, hetero-arenes, alkynes, allenes, enynes, and dienes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry , Visva-Bharati (A Central University) , Santiniketan 731235 , India
| | - Alakananda Hajra
- Department of Chemistry , Visva-Bharati (A Central University) , Santiniketan 731235 , India
| |
Collapse
|
6
|
Zhang J, Yan N, Ju C, Zhao D. Nickel(0)‐Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon‐Stereogenic Benzosiloles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Nuo Yan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Cheng‐Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
7
|
Zhang J, Yan N, Ju CW, Zhao D. Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles. Angew Chem Int Ed Engl 2021; 60:25723-25728. [PMID: 34590411 DOI: 10.1002/anie.202111025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/06/2023]
Abstract
The development of a straightforward strategy to obtain enantioenriched silicon-stereogenic benzosiloles remains a challenging yet appealing synthesis venture due to their potential future application in chiral electronic and optoelectronic devices. In this context, all of the existing methods rely on Rh-catalyzed systems and are somewhat limited in scope. Herein, we disclose the first Ni0 -catalyzed ring expansion process that enables the preparation of benzosiloles possessing tetraorganosilicon stereocenters in excellent yields and enantioselectivities. The presented catalysis strategy is further applied to the asymmetric synthesis of silicon-stereogenic bis-silicon-bridged π-extended systems. Preliminary studies reveal that such compounds exhibit fluorescence emission, Cotton effects and circularly polarized luminescence (CPL) activity.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Nuo Yan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
8
|
Yu X, Daniliuc CG, Alasmary FA, Studer A. Direct Access to α‐Aminosilanes Enabled by Visible‐Light‐Mediated Multicomponent Radical Cross‐Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoye Yu
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Fatmah Ali Alasmary
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
9
|
Yu X, Daniliuc CG, Alasmary FA, Studer A. Direct Access to α-Aminosilanes Enabled by Visible-Light-Mediated Multicomponent Radical Cross-Coupling. Angew Chem Int Ed Engl 2021; 60:23335-23341. [PMID: 34432353 PMCID: PMC8596805 DOI: 10.1002/anie.202109252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Indexed: 12/19/2022]
Abstract
α-Aminosilanes are an important class of organic compounds that show biological activity. In this communication, a new approach to α-aminosilanes that utilizes photoredox catalysis to enable three-component coupling of organo(tristrimethylsilyl)silanes with feedstock alkylamines and aldehydes is presented. A wide range of highly functionalized α-aminosilanes can be obtained in good yields under mild conditions. Both primary amines and secondary amines are compatible with this transformation. Moreover, optically pure α-aminosilanes are accessible by using chiral amines. Mechanistic studies indicate that reactions proceed through radical/radical cross-coupling of silyl radicals with α-amino alkyl radicals.
Collapse
Affiliation(s)
- Xiaoye Yu
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Fatmah Ali Alasmary
- Chemistry DepartmentCollege of ScienceKing Saud UniversityRiyadh11451Saudi Arabia
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
- Chemistry DepartmentCollege of ScienceKing Saud UniversityRiyadh11451Saudi Arabia
| |
Collapse
|
10
|
|
11
|
|
12
|
Ke J, Liu W, Zhu X, Tan X, He C. Electrochemical Radical Silyl‐Oxygenation of Activated Alkenes. Angew Chem Int Ed Engl 2021; 60:8744-8749. [DOI: 10.1002/anie.202016620] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/28/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wentan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
13
|
Ke J, Liu W, Zhu X, Tan X, He C. Electrochemical Radical Silyl‐Oxygenation of Activated Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wentan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
14
|
|
15
|
Abstract
This review summarizes the recent findings and developments in the emerging area of photocatalytic silylation with literature coverage mainly extending from 2014 to February 2021.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| | - Dipti Lai
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| |
Collapse
|
16
|
Liu P, Hao N, Yang D, Wan L, Wang T, Zhang T, Zhou R, Cong X, Kong J. Iron-catalyzed para-selective C–H silylation of benzamide derivatives with chlorosilanes. Org Chem Front 2021. [DOI: 10.1039/d1qo00243k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This paper developed the para-selective silylation of benzamide derivatives with chlorosilanes using FeCl2 catalysis.
Collapse
Affiliation(s)
- Pei Liu
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Na Hao
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Southwest Medical University
- Luzhou 646000
- P. R. China
| | - Dong Yang
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Lingyun Wan
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Rui Zhou
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Xuefeng Cong
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| |
Collapse
|
17
|
Nozawa-Kumada K, Ojima T, Inagi M, Shigeno M, Kondo Y. Di-tert-butyl Peroxide (DTBP)-Mediated Oxysilylation of Unsaturated Carboxylic Acids for the Synthesis of Silyl Lactones. Org Lett 2020; 22:9591-9596. [DOI: 10.1021/acs.orglett.0c03640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Takuto Ojima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Moeto Inagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Synthesis of Luminescent 2-7 Disubstituted Silafluorenes with alkynyl-carbazole, -phenanthrene, and -benzaldehyde substituents. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Guo J, Feng W, Du P, Zhang R, Liu J, Liu Y, Wang Z, Lu X. Aggregation-Induced Electrochemiluminescence of Tetraphenylbenzosilole Derivatives in an Aqueous Phase System for Ultrasensitive Detection of Hexavalent Chromium. Anal Chem 2020; 92:14838-14845. [DOI: 10.1021/acs.analchem.0c03709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinna Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Weiqiang Feng
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yu Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhiming Wang
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| |
Collapse
|
20
|
Yang L, Koo D, Wu J, Wong JM, Day T, Zhang R, Kolongoda H, Liu K, Wang J, Ding Z, Pagenkopf BL. Benzosiloles with Crystallization-Induced Emission Enhancement of Electrochemiluminescence: Synthesis, Electrochemistry, and Crystallography. Chemistry 2020; 26:11715-11721. [PMID: 32484982 DOI: 10.1002/chem.202002647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 01/19/2023]
Abstract
Crystallization-induced emission enhancement (CIEE) was demonstrated for the first time for electrochemilunimescence (ECL) with two new benzosiloles. Compared with their solution, the films of the two benzosiloles gave CIEE of 24 and 16 times. The mechanism of the CIEE-ECL was examined by spooling ECL spectroscopy, X-ray crystal structure analysis, photoluminescence, and DFT calculations. This CIEE-ECL system is a complement to the well-established aggregation-induced emission enhancement (AIEE) systems. Unique intermolecular interactions are noted in the crystalline chromophore. The first heterogeneous ECL system is established for organic compounds with highly hydrophobic properties.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Donghyun Koo
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Jackie Wu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Jonathan M Wong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Tyler Day
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Ruizhong Zhang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Harshana Kolongoda
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Kehan Liu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Jian Wang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Brian L Pagenkopf
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| |
Collapse
|
21
|
Li Y, Shu K, Liu P, Sun P. Selective C-5 Oxidative Radical Silylation of Imidazopyridines Promoted by Lewis Acid. Org Lett 2020; 22:6304-6307. [DOI: 10.1021/acs.orglett.0c02131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yifan Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Kaichen Shu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
22
|
Hou H, Xu Y, Yang H, Chen X, Yan C, Shi Y, Zhu S. Visible-Light Mediated Hydrosilylative and Hydrophosphorylative Cyclizations of Enynes and Dienes. Org Lett 2020; 22:1748-1753. [DOI: 10.1021/acs.orglett.0c00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yue Xu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Haibo Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Advances in Synthesis of π-Extended Benzosilole Derivatives and Their Analogs. Molecules 2020; 25:molecules25030548. [PMID: 32012731 PMCID: PMC7037468 DOI: 10.3390/molecules25030548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/17/2022] Open
Abstract
Benzosiloles and their π-extended derivatives are present in many important advanced materials due to their excellent physical properties. Especially, they have found many potential applications in the development of novel electronic materials such as OLEDs, semiconductors and solar cells. In this review, we have summarized several main approaches to construct (di)benzosilole derivatives and (benzo)siloles fused to aromatic five- and six-membered heterocycles.
Collapse
|
24
|
|
25
|
Ge Y, Tian Y, Wu J, Yan Q, Zheng L, Ren Y, Zhao J, Li Z. Iron-promoted free radical cascade difunctionalization of unsaturated benzamides with silanes. Chem Commun (Camb) 2020; 56:12656-12659. [DOI: 10.1039/d0cc05213b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient cascade difunctionalization of unsaturated benzamides with silanes was developed for the synthesis of various silylated dihydroisoquinolinones and 1,3-isoquinolinediones.
Collapse
Affiliation(s)
- Yaxin Ge
- College of Chemistry & Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, and Institute of Life Science and Green Development
- Hebei University
- Baoding
| | - Yunfei Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- P. R. China
| | - Jilai Wu
- College of Chemistry & Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, and Institute of Life Science and Green Development
- Hebei University
- Baoding
| | - Qinqin Yan
- College of Chemistry & Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, and Institute of Life Science and Green Development
- Hebei University
- Baoding
| | - Luping Zheng
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- P. R. China
| | - Yingming Ren
- College of Chemistry & Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, and Institute of Life Science and Green Development
- Hebei University
- Baoding
| | - Jincan Zhao
- College of Chemistry & Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, and Institute of Life Science and Green Development
- Hebei University
- Baoding
| | - Zejiang Li
- College of Chemistry & Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, and Institute of Life Science and Green Development
- Hebei University
- Baoding
| |
Collapse
|
26
|
Zhang Z, Hu X. Arylsilylation of Electron-Deficient Alkenes via Cooperative Photoredox and Nickel Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04916] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhikun Zhang
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, Lausanne 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, Lausanne 1015, Switzerland
| |
Collapse
|
27
|
Feng W, Su Q, Ma Y, Džolić Z, Huang F, Wang Z, Chen S, Tang BZ. Tetraphenylbenzosilole: An AIE Building Block for Deep-Blue Emitters with High Performance in Nondoped Spin-Coating OLEDs. J Org Chem 2019; 85:158-167. [DOI: 10.1021/acs.joc.9b02383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiqiang Feng
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qiang Su
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yao Ma
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zoran Džolić
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Fei Huang
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shuming Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ben Zhong Tang
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| |
Collapse
|
28
|
Wei B, Zhang D, Chen Y, Lei A, Knochel P. Preparation of Polyfunctional Biaryl Derivatives by Cyclolanthanation of 2-Bromobiaryls and Heterocyclic Analogues Using nBu 2 LaCl⋅4 LiCl. Angew Chem Int Ed Engl 2019; 58:15631-15635. [PMID: 31461206 PMCID: PMC6856828 DOI: 10.1002/anie.201908046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Various aryl- and heteroaryl-substituted 2-bromobiaryls are converted to cyclometalated lanthanum intermediates by reaction with nBu2 LaCl⋅4 LiCl. These resulting lanthanum heterocycles are key intermediates for the facile preparation of functionalized 2,2'-diiodobiaryls, silafluorenes, fluoren-9-ones, phenanthrenes, and their related heterocyclic analogues. X-ray absorption fine structure (XAFS) spectroscopy was used to rationalize the proposed structures of the involved organolanthanum species.
Collapse
Affiliation(s)
- Baosheng Wei
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Dongchao Zhang
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Yi‐Hung Chen
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
29
|
Wei B, Zhang D, Chen Y, Lei A, Knochel P. Herstellung von polyfunktionellen Biarylderivaten durch Cyclolanthanierung von 2‐Bromobiarylen und heterocyclischen Analoga unter Verwendung von
n
Bu
2
LaCl⋅4 LiCl. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Baosheng Wei
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Dongchao Zhang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Yi‐Hung Chen
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
30
|
Cu/chiral phosphoric acid-catalyzed radical-initiated asymmetric aminosilylation of alkene with hydrosilane. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9528-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Feng Y, Zhang H, Yu Y, Yang L, Cui X. Ferrocene-Initiated Oxidative Cyclization of Benzaldehyde with Alkyne: New Strategy to Substituted Indenones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yadong Feng
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
- College of Environment and Public Health; Department of Science and Technology for Inspection; Xiamen Huaxia University; 361024 Xiamen China
| | - Hong Zhang
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
| | - Yunliang Yu
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
| | - Lei Yang
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
| |
Collapse
|
32
|
Dong Y, Takata Y, Yoshigoe Y, Sekine K, Kuninobu Y. Lewis acid-catalyzed synthesis of silafluorene derivatives from biphenyls and dihydrosilanes via a double sila-Friedel–Crafts reaction. Chem Commun (Camb) 2019; 55:13303-13306. [DOI: 10.1039/c9cc07692a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of silafluorene derivatives from aminobiphenyl compounds and dihydrosilanes via a double sila-Friedel–Crafts reaction using a borane catalyst has been achieved.
Collapse
Affiliation(s)
- Yafang Dong
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
| | - Yuta Takata
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
| | - Yusuke Yoshigoe
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
| | - Kohei Sekine
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
- Institute for Materials Chemistry and Engineering Kyushu University
- Fukuoka 816-8580
| | - Yoichiro Kuninobu
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
- Institute for Materials Chemistry and Engineering Kyushu University
- Fukuoka 816-8580
| |
Collapse
|
33
|
Zhang C, Pi J, Wang L, Liu P, Sun P. Silyl radical initiated radical cascade addition/cyclization: synthesis of silyl functionalized 4H-pyrido[4,3,2-gh]phenanthridin-5(6H)-ones. Org Biomol Chem 2018; 16:9223-9229. [PMID: 30475364 DOI: 10.1039/c8ob02670j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cyclization cascade initiated by the addition of a silyl radical to an electron-deficient carbon-carbon double bond of N-arylacrylamides, followed by intramolecular cyano group insertion and homolytic aromatic substitution has been reported. In the presence of di-lauroyl peroxide (LPO), under metal-free conditions, several readily available hydrosilanes were successfully used as the source of silyl radicals and a series of silyl functionalized 4H-pyrido[4,3,2-gh]phenanthridin-5(6H)-ones were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Chen Zhang
- College of Chemistry and Materials Science, Nanjing Normal University, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
34
|
Silyldefluorination of Fluoroarenes by Concerted Nucleophilic Aromatic Substitution. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808646] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Mallick S, Xu P, Würthwein EU, Studer A. Silyldefluorination of Fluoroarenes by Concerted Nucleophilic Aromatic Substitution. Angew Chem Int Ed Engl 2018; 58:283-287. [DOI: 10.1002/anie.201808646] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Shubhadip Mallick
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation (CMTC); Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Germany
| | - Pan Xu
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation (CMTC); Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Germany
| | - Ernst-Ulrich Würthwein
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation (CMTC); Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation (CMTC); Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
36
|
Han Y, Zhang S, He J, Zhang Y. Switchable C–H Silylation of Indoles Catalyzed by a Thermally Induced Frustrated Lewis Pair. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yuxi Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Sutao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
37
|
Yang C, Wang J, Li J, Ma W, An K, He W, Jiang C. Visible-Light Induced Radical Silylation for the Synthesis of Dibenzosiloles via Dehydrogenative Cyclization. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800417] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yang
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Jing Wang
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Jianhua Li
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Wenchao Ma
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Kun An
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Wei He
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Chao Jiang
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| |
Collapse
|
38
|
Sakamoto R, Nguyen BN, Maruoka K. Transition-Metal-Free Direct C−H Silylation of Electron-Deficient Heteroarenes with Hydrosilanes via a Radical Mechanism. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800282] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryu Sakamoto
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Bich-Ngoc Nguyen
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Keiji Maruoka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; No.100, West Waihuan Road, HEMC, 4 Panyu District Guangzhou 510006 China
| |
Collapse
|
39
|
Kinoshita H, Fukumoto H, Ueda A, Miura K. Syntheses of substituted benzosiloles and siloles by diisobutylaluminium hydride-promoted cyclization of 1-silyl-2-(2-silylethynyl)benzenes and 1,4-disilylalk-3-en-1-ynes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Huang MH, Hao WJ, Li G, Tu SJ, Jiang B. Recent advances in radical transformations of internal alkynes. Chem Commun (Camb) 2018; 54:10791-10811. [DOI: 10.1039/c8cc04618b] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights the recent progress in the radical transformation of internal alkynes and focuses on the reaction mechanisms by carbon/heteroatom-centered triggered additions, and offers a comprehensive overview on the existing procedures and employed methodologies.
Collapse
Affiliation(s)
- Min-Hua Huang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
- Department of Chemistry and Biochemistry
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
41
|
Yang Q, Liu L, Chi Y, Hao W, Zhang WX, Xi Z. Rhodium-catalyzed intramolecular carbosilylation of alkynes via C(sp3)–Si bond cleavage. Org Chem Front 2018. [DOI: 10.1039/c7qo00927e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(i)-catalyzed intramolecular cis-carbosilylation of alkynes was achieved to afford silatricyclic compounds in good yields.
Collapse
Affiliation(s)
- Qi Yang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Liang Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yue Chi
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
42
|
Yang Y, Song RJ, Li Y, Ouyang XH, Li JH, He DL. Oxidative radical divergent Si-incorporation: facile access to Si-containing heterocycles. Chem Commun (Camb) 2018; 54:1441-1444. [DOI: 10.1039/c7cc08964c] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative radical cleavage of Si–H/silyl C(sp3)–H bonds, dual Si–H bonds and Si–H/Si–Si bonds toward Si-heterocycles is presented.
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - Ren-Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - Yang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - Xuan-Hui Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
| |
Collapse
|
43
|
Wu LJ, Yang Y, Song RJ, Yu JX, Li JH, He DL. An access to 1,3-azasiline-fused quinolinonesviaoxidative heteroannulation involving silyl C(sp3)–H functionalization. Chem Commun (Camb) 2018; 54:1367-1370. [DOI: 10.1039/c7cc08996a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A Mn-promoted intermolecular oxidative heteroannulation ofN-(2-cyanoaryl)-acrylamides with tertiary silanes toward 1,3-azasiline-fused quinolinones is presented.
Collapse
Affiliation(s)
- Li-Jun Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - Yuan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - Ren-Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - Jiang-Xi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
- Nanchang 330063
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
- Changsha 410082
- China
| |
Collapse
|
44
|
Hoshino Y, Ikeda Y, Nakai Y, Honda K. Facile Synthesis of Silylated 4,5-Disubstituted Phthalates via Inverse Electron-demand Cycloaddition of 2-Pyrone-4,5-dicarboxylate with Silylacetylenes. CHEM LETT 2017. [DOI: 10.1246/cl.170820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yujiro Hoshino
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501
| | - Yoshitaka Ikeda
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501
| | - Yota Nakai
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501
| | - Kiyoshi Honda
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501
| |
Collapse
|
45
|
Shao A, Luo X, Chiang CW, Gao M, Lei A. Furans Accessed through Visible-Light-Mediated Oxidative [3+2] Cycloaddition of Enols and Alkynes. Chemistry 2017; 23:17874-17878. [DOI: 10.1002/chem.201704519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Ailong Shao
- The Institute for Advanced Studies (IAS); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 Hubei P.R. China
| | - Xu Luo
- The Institute for Advanced Studies (IAS); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 Hubei P.R. China
| | - Chien-Wei Chiang
- The Institute for Advanced Studies (IAS); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 Hubei P.R. China
| | - Meng Gao
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 Hubei P.R. China
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| |
Collapse
|
46
|
Xu Z, Chai L, Liu ZQ. Free-Radical-Promoted Site-Selective C–H Silylation of Arenes by Using Hydrosilanes. Org Lett 2017; 19:5573-5576. [DOI: 10.1021/acs.orglett.7b02717] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengbao Xu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li Chai
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhong-Quan Liu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State
Key Laboratory Cultivation Base for TCM Quality and Efficacy, College
of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
47
|
Minami Y, Noguchi Y, Hiyama T. Synthesis of Benzosiloles by Intramolecular anti-Hydroarylation via ortho-C-H Activation of Aryloxyethynyl Silanes. J Am Chem Soc 2017; 139:14013-14016. [PMID: 28933842 DOI: 10.1021/jacs.7b08055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Straightforward synthesis of benzosiloles was achieved by the invention of Pd/acid-catalyzed intramolecular anti-hydroarylation of aryloxyethynyl(aryl)silanes via ortho-C-H bond activation. The aryloxy group bound to the ethynyl carbon is the key factor for this transformation.
Collapse
Affiliation(s)
- Yasunori Minami
- Research and Development Initiative, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuta Noguchi
- Department of Applied Chemistry, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tamejiro Hiyama
- Research and Development Initiative, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
48
|
Lan Y, Chang XH, Fan P, Shan CC, Liu ZB, Loh TP, Xu YH. Copper-Catalyzed Silylperoxidation Reaction of α,β-Unsaturated Ketones, Esters, Amides, and Conjugated Enynes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02754] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yun Lan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xi-Hao Chang
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cui-Cui Shan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zi-Bai Liu
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Teck-Peng Loh
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute
of Advanced Synthesis, Jiangsu National Synergetic Innovation Center
for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637616
| | - Yun-He Xu
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
49
|
Zhou D, Gao Y, Liu B, Tan Q, Xu B. Synthesis of Silicon and Germanium-Containing Heterosumanenes via Rhodium-Catalyzed Cyclodehydrogenation of Silicon/Germanium–Hydrogen and Carbon–Hydrogen Bonds. Org Lett 2017; 19:4628-4631. [DOI: 10.1021/acs.orglett.7b02254] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dandan Zhou
- Department
of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Ya Gao
- Department
of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department
of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department
of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department
of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, East China Normal University, Shanghai 200062, China
| |
Collapse
|
50
|
Murai M, Okada R, Asako S, Takai K. Rhodium-Catalyzed Silylative and Germylative Cyclization with Dehydrogenation Leading to 9-Sila- and 9-Germafluorenes: A Combined Experimental and Computational Mechanistic Study. Chemistry 2017; 23:10861-10870. [DOI: 10.1002/chem.201701579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Ryo Okada
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Sobi Asako
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|