1
|
Maikhuri VK, Verma V, Mathur D, Prasad AK, Chaudhary A, Kumar R. Sugars in Multicomponent Reactions: A Toolbox for Diversity-Oriented Synthesis. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1751418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractMulticomponent reactions (MCRs) cover strategically employed chemical transformations that incorporate three or more reactants in one pot leading to a functionalized final product. Thus, it is an ideal tool to achieve high levels of complexity, diversity, yields of desired products, atom economy, and reduced reaction times. Sugars belong to the class of naturally occurring compounds with fascinating applications in the field of drug discovery due to the presence of various hydroxy groups and well-defined stereochemistry. However, their potential in MCRs has been realized only recently. This account describes recent advances in the synthesis of sugar-derived heterocycles synthesized by MCRs. We hope to encourage the synthetic and medicinal chemistry community to apply this powerful MCR chemistry to generate novel glycoconjugate challenges.1 Introduction2 Synthesis of Various Functionalized Sugar Compounds2.1 Passerini and Ugi Multicomponent Reactions2.2 Petasis Reaction2.3 Hantzsch Reaction2.4 Domino Ferrier–Povarov Reaction2.5 Marckwald Reaction2.6 Groebke–Blackburn–Bienaymé (GBB) Reaction2.7 Prins–Ritter Reaction2.8 Debus–Radziszewski Imidazole Synthesis Reaction2.9 Mannich Reaction2.10 A3-Coupling Reaction2.11 [3+2]-Cycloaddition Reactions2.12 Miscellaneous Reactions3 Conclusion
Collapse
Affiliation(s)
| | - Vineet Verma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Department of Chemistry, Starex University
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Daulat Ram College, Department of Chemistry, University of Delhi
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
| | | | - Rajesh Kumar
- Department of Chemistry, R.D.S. College, B.R.A. Bihar University
| |
Collapse
|
2
|
Soni JP, Kadagathur M, Shankaraiah N. Recent Updates on Azido‐reductive Cyclization Approaches: Syntheses of
aza
‐Heterocyclic Frameworks. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - Manasa Kadagathur
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| |
Collapse
|
3
|
Dhara D, Dhara A, Bennett J, Murphy PV. Cyclisations and Strategies for Stereoselective Synthesis of Piperidine Iminosugars. CHEM REC 2021; 21:2958-2979. [PMID: 34713557 DOI: 10.1002/tcr.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
This personal account focuses on synthesis of polyhydroxylated piperidines, a subset of compounds within the iminosugar family. Cyclisations to form the piperidine ring include reductive amination, substitution via amines, iminium ions and cyclic nitrones, transamidification (N-acyl transfer), addition to alkenes, ring contraction and expansion, photoinduced electron transfer, multicomponent Ugi reaction and ring closing metathesis. Enantiomerically pure piperidines are obtained from chiral pool precursors (e. g. sugars, amino acids, Garner's aldehyde) or asymmetric reactions (e. g. epoxidation, dihydroxylation, aminohydroxylation, aldol, biotransformation). Our laboratory have contributed cascades based on reductive amination from glycosyl azide precursors as well as Huisgen azide-alkene cycloaddition. The latter's combination with allylic azide rearrangement has given substituted piperidines, including those with quaternary centres adjacent to nitrogen.
Collapse
Affiliation(s)
- Debashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,Unité de Chimie des Biomolécules, UMR 3523 CNRS, Institut Pasteur, Université de Paris, 28 rue du Dr Roux, 75015, Paris, France
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Jack Bennett
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
4
|
Shukla P, Deswal D, Pandit M, Latha N, Mahajan D, Srivastava T, Narula AK. Exploration of novel TOSMIC tethered imidazo[1,2-a]pyridine compounds for the development of potential antifungal drug candidate. Drug Dev Res 2021; 83:525-543. [PMID: 34569640 DOI: 10.1002/ddr.21883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022]
Abstract
New candidates of imidazo[1,2-a]pyridine were designed by combining 2-amino pyridine, TOSMIC and various assorted aldehydes to explore their antioxidant and antifungal potential. The design of these derivatives was based on utilizing the antifungal potential of azoles and TOSMIC moiety. These derivatives were synthesized by adopting multi-component reaction methodology, as it serves as a rapid and efficient tool to target structurally diverse heterocyclic compounds in quantitative yield. The resulting imidazo[1,2-a]pyridine derivatives were structurally verified by 1 HNMR, 13 CNMR, HRMS, and HPLC. The compounds were analyzed for their antioxidant and fluorescent properties and it was observed that compound 15 depicted highest potential. The compounds were evaluated for their antifungal potential to highlight their medical application in the area of Invasive Fungal Infections (IFI). Compound 12 gave the highest antifungal inhibition against Aspergillus fumigatus 3007 and Candida albicans 3018. To elucidate the antifungal mechanism, confocal images of treated fungi were analyzed, which depicted porous nature of fungal membrane. Estimation of fungal membrane sterols by UPLC indicated decrease in ergosterol component of fungal membrane. In silico studies further corroborated with the in vitro results as docking studies depicted interaction of synthesized heterocyclic compounds with amino acids present in the active site of target enzyme (lanosterol 14 alpha demethylase). Absorption, distribution, metabolism, and excretion (ADME) analysis was indicative of drug-likeliness of the synthesized compounds.
Collapse
Affiliation(s)
- Pratibha Shukla
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.,Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| | - Deepa Deswal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| | - Mansi Pandit
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Narayanan Latha
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Divyank Mahajan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Anudeep Kumar Narula
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.,Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| |
Collapse
|
5
|
Iftikhar M, Lu Y, Zhou M. An overview of therapeutic potential of N-alkylated 1-deoxynojirimycin congeners. Carbohydr Res 2021; 504:108317. [PMID: 33932806 DOI: 10.1016/j.carres.2021.108317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
Polyhydroxylated alkaloids display a wide range of biological activities, suggesting their use in the treatment of various diseases. Their most famous representative, 1-deoxynojirimycin (DNJ), is a natural product that shows α- and β-glucosidase inhibition. This molecule has been since converted into two clinically approved drugs i.e., Zavesca® and Glyset®, targeting type I Gaucher's disease and type II diabetes mellitus, respectively. This review examines the therapeutic potential of important DNJ congeners reported in last decade and presents concise mechanism of glycosidase inhibition. A brief overview of substituents conjugation's impact on DNJ scaffold (including N-alkylated DNJ derivatives, mono-valent, di-valent and multivalent DNJ congeners, N-[5-(adamantan-1-yl-methoxy)-pentyl]-1-deoxynojirimycin (AMP-DNM) look alike DNJ based lipophilic derivatives, AMP-DNM based neoglycoconjugates, DNJ click derivatives with varying carboxylic acids and aromatic moieties, conjugates of DNJ and glucose, and N-bridged DNJ analogues) towards various enzymes such as α/β glucosidase, porcine trehalase, as F508del-CFTR correctors, α-mannosidase, human placental β-glucocerebrosidase, N370S β-GCase, α-amylase and insect trehalase as potent and selective inhibitors have been discussed with potential bioactivities, which can provide inspiration for future studies.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China
| | - Yinghong Lu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China
| | - Min Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China.
| |
Collapse
|
6
|
Azad CS, Shukla P, Olson MA, Narula AK. Phosphinic Acid/
NaI
Mediated Reductive Cyclization Approach for Accessing the
L
‐1‐Deoxynojirimycin
Using a
Two‐Component Three‐Centered
(
2C3C
) Ugi Type Reaction. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chandra S Azad
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 China
- “Hygeia”, Centre of Excellence in Pharmaceutical Sciences, Guru Gobind Singh Indraprastha University Sector 16‐C, Dwarka New Delhi 110078 India
| | - Pratibha Shukla
- “Hygeia”, Centre of Excellence in Pharmaceutical Sciences, Guru Gobind Singh Indraprastha University Sector 16‐C, Dwarka New Delhi 110078 India
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 China
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Anudeep K Narula
- “Hygeia”, Centre of Excellence in Pharmaceutical Sciences, Guru Gobind Singh Indraprastha University Sector 16‐C, Dwarka New Delhi 110078 India
| |
Collapse
|
7
|
Flores-Reyes JC, Islas-Jácome A, González-Zamora E. The Ugi three-component reaction and its variants. Org Chem Front 2021. [DOI: 10.1039/d1qo00313e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A broad variety of α-aminoamide-based compounds have been synthesized via the three-component version of the Ugi reaction (U-3CR) or by any of its variants (Ugi-Zhu-3CR, Orru-3CR, Ugi-4C-3CR, Ugi-Joullié-3CR, GBB-3CR, Ugi-Reissert-3CR, and so on).
Collapse
Affiliation(s)
- Julio César Flores-Reyes
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Ciudad de Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Ciudad de Mexico
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Ciudad de Mexico
| |
Collapse
|
8
|
Li S, Jaszczyk J, Pannecoucke X, Poisson T, Martin OR, Nicolas C. Stereospecific Synthesis of Glycoside Mimics Through Migita‐Kosugi‐Stille Cross‐Coupling Reactions of Chemically and Configurationally Stable 1‐
C
‐Tributylstannyl Iminosugars. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sizhe Li
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Justyna Jaszczyk
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Xavier Pannecoucke
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Thomas Poisson
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
- Institut Universitaire de France 1 rue Descartes 75231 Paris France
| | - Olivier R. Martin
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| |
Collapse
|
9
|
Nazeri MT, Farhid H, Mohammadian R, Shaabani A. Cyclic Imines in Ugi and Ugi-Type Reactions. ACS COMBINATORIAL SCIENCE 2020; 22:361-400. [PMID: 32574488 DOI: 10.1021/acscombsci.0c00046] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ugi four-component reactions (U-4CRs) are widely recognized as being highly efficient for the synthesis of pseudopeptides. However, the products of these reactions are not so interesting as drug candidates because they are not conformationally restricted enough for a potent interaction with biological targets. One possible way to overcome this problem is to replace amine and oxo components in the U-4CRs with cyclic imines in so-called Joullié-Ugi three-component reactions (JU-3CRs). This approach provides a robust single-step route to peptide moieties connected to N-heterocyclic motifs that are found as core skeletons in many natural products and pharmaceutical compounds. JU-3CRs also provide much better diastereoselectivity than their four-component analogues. We survey here the redesign of many synthetic routes for the efficient preparation of a wide variety of three-, five-, six-, and seven-membered heterocyclic compounds connected to the peptide backbone. Additionally, in the Ugi reactions based on the cyclic imines, α-acidic isocyanides, or azides can be replaced with normal isocyanides or acids, respectively, leading to the synthesis of N-heterocycles attached to oxazoles or tetrazoles, which are of great pharmaceutical significance. This Review includes all research articles related to Ugi reactions based on the cyclic imines to the year 2020 and will be useful to chemists in designing novel synthetic routes for the synthesis of individual and combinatorial libraries of natural products and drug-like compounds.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Reza Mohammadian
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| |
Collapse
|
10
|
Lambruschini C, Moni L, Banfi L. Diastereoselectivity in Passerini Reactions of Chiral Aldehydes and in Ugi Reactions of Chiral Cyclic Imines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 Genova Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 Genova Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 Genova Italy
| |
Collapse
|
11
|
Pinna A, Basso A, Lambruschini C, Moni L, Riva R, Rocca V, Banfi L. Stereodivergent access to all four stereoisomers of chiral tetrahydrobenzo[f][1,4]oxazepines, through highly diastereoselective multicomponent Ugi–Joullié reaction. RSC Adv 2020; 10:965-972. [PMID: 35494435 PMCID: PMC9047508 DOI: 10.1039/c9ra10689h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Starting from easily accessible chiral enantiopure 1,2-amino alcohols and salicylaldehydes, a concise route to cyclic imines has been developed. These chiral cyclic imines undergo a highly diastereoselective Ugi–Joullié reaction to give trans tetrahydrobenzo[f][1,4]oxazepines with the introduction of up to 4 diversity inputs. The cis isomer may also be attained, thanks to a thermodynamically controlled base catalysed epimerization. Free secondary amines have been obtained using an unprecedented “removable” carboxylic acid. Starting from easily accessible enantiopure 1,2-aminoalcohols and salicylaldehydes, a concise and diastereodivergent route to tetrahydrobenzo[f][1,4]oxazepines has been developed.![]()
Collapse
Affiliation(s)
- Alessandro Pinna
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| | | | - Lisa Moni
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| | - Renata Riva
- Department of Pharmacy
- Università di Genova
- Italy
| | - Valeria Rocca
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| |
Collapse
|
12
|
Novel nucleosides as potential inhibitors of fungal lanosterol 14α-demethylase: an in vitro and in silico study. Future Med Chem 2019; 11:2663-2686. [PMID: 31637926 DOI: 10.4155/fmc-2019-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: The global burden of fungal infections has transitioned from a case-specific observation to a major cause of high human mortality. Therefore, novel compounds with innovative methodologies need to be synthesized and evaluated for their antifungal potential to keep pace with the current clinical demands. Results: An efficient synthetic pathway was developed for the synthesis of 21 synthetic novel nucleosides. Two compounds had significant antifungal effect on Aspergillus fumigatus 3007, which was comparable to fluconazole. The experimental data (confocal microscopy, ultrahigh-performance liquid chromatography and flow cytometry) demonstrated the inhibition of fungal lanosterol 14α-demethylase. Conclusion: Owing to the therapeutic relevance of the synthesized nucleosides and simplicity of the procedure, the method may find its potential application for synthesis of antifungal agents.
Collapse
|
13
|
Caputo S, Banfi L, Basso A, Galatini A, Moni L, Riva R, Lambruschini C. Diversity-Oriented Synthesis of Various Enantiopure Heterocycles by Coupling Organocatalysis with Multicomponent Reactions. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Samantha Caputo
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Andrea Galatini
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Renata Riva
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| |
Collapse
|
14
|
Azad CS, Narula AK. Substituted, Fused, Tricyclic 6,7-Dihydro-1H
,5H
-pyrido[1,2,3-de
]quinoxaline-3-amines by Isocyanide-Abetted Cycloaddition Reaction. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chandra S. Azad
- “Hygeia”, Centre of Excellence in Pharmaceutical Sciences; Guru Gobind Singh Indraprastha University; Sector 16-C, Dwarka 110078 New Delhi India
| | - Anudeep K. Narula
- “Hygeia”, Centre of Excellence in Pharmaceutical Sciences; Guru Gobind Singh Indraprastha University; Sector 16-C, Dwarka 110078 New Delhi India
| |
Collapse
|
15
|
Iftikhar M, Wang L, Fang Z. Synthesis of 1-Deoxynojirimycin: Exploration of Optimised Conditions for Reductive Amidation and Separation of Epimers. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x15000341607489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1-Deoxynojirimycin (DNJ), which has importance with respect to sugar processing enzymes, is a synthetic target for chemists. A key step in the synthesis of DNJ is the preparation of 2,3,4,6-tetra- O-benzyl-D-glucono-δ-lactam. By varying reaction parameters such as temperature, solvent and reducing reagent, improvements on previous methods are described. A novel approach for the synthesis of 2,3,4,6-tetra- O-benzyl-5-dehydro-5-deoxo-D-gluconamide has been developed by using PCC as an oxidising agent. Separation of epimers permitted DNJ to be obtained in 85% yield after reduction and hydrogenolysis steps.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Lin Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Zhijie Fang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P.R. China
| |
Collapse
|
16
|
Liu C, Zhou L, Jiang D, Gu Y. Multicomponent Reactions of Aldo-X Bifunctional Reagent α-Oxoketene Dithioacetals and Indoles or Amines: Divergent Synthesis of Dihydrocoumarins, Quinolines, Furans, and Pyrroles. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201500497] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Changhui Liu
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu road Hongshan District Wuhan 430074 China
| | - Li Zhou
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu road Hongshan District Wuhan 430074 China
| | - Dan Jiang
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu road Hongshan District Wuhan 430074 China
| | - Yanlong Gu
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu road Hongshan District Wuhan 430074 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Lanzhou 730000 P.R. China
| |
Collapse
|
17
|
Azad CS, Narula AK. An operational transformation of 3-carboxy-4-quinolones into 3-nitro-4-quinolones via ipso-nitration using polysaccharide supported copper nanoparticles: synthesis of 3-tetrazolyl bioisosteres of 3-carboxy-4-quinolones as antibacterial agents. RSC Adv 2016. [DOI: 10.1039/c5ra26909a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The 3-nitro-4-quinolones have been synthesized via ipso nitration of 3-carboxy-4-quinolones by chitosan supported Cu nano-particles. The 3-nitro derivatives were converted into their 3-tetrazolyl bioisosteres which showed increased antibacterial activity.
Collapse
Affiliation(s)
- Chandra S. Azad
- “Hygeia” Centre of Excellence in Pharmaceutical Sciences (CEPS)
- GGS Indraprastha University
- New Delhi
- India
| | - Anudeep K. Narula
- “Hygeia” Centre of Excellence in Pharmaceutical Sciences (CEPS)
- GGS Indraprastha University
- New Delhi
- India
| |
Collapse
|
18
|
Azad CS, Khan IA, Narula AK. Organocatalyzed asymmetric Michael addition by an efficient bifunctional carbohydrate–thiourea hybrid with mechanistic DFT analysis. Org Biomol Chem 2016; 14:11454-11461. [DOI: 10.1039/c6ob02158a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of thiourea based bifunctional organocatalysts having d-glucose as a core scaffold were synthesized and examined as catalysts for the asymmetric Michael addition reaction of aryl/alkyl trans-β-nitrostyrenes over cyclohexanone and other Michael donors having active methylene.
Collapse
Affiliation(s)
- Chandra S. Azad
- “Hygeia” Centre of Excellence in Pharmaceutical Sciences (CEPS)
- GGS Indraprastha University
- New Delhi
- India
| | - Imran A. Khan
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar
- India
| | - Anudeep K. Narula
- “Hygeia” Centre of Excellence in Pharmaceutical Sciences (CEPS)
- GGS Indraprastha University
- New Delhi
- India
| |
Collapse
|
19
|
Azad CS, Balaramnavar VM, Khan IA, Doharey PK, Saxena JK, Saxena AK. Operative conversions of 3-carboxy-4-quinolones into 3-nitro-4-quinolones via ipso-nitration: potential antifilarial agents as inhibitors of Brugia malayi thymidylate kinase. RSC Adv 2015. [DOI: 10.1039/c5ra18036h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An efficient, cost effective and green methodology for ipso nitration in the synthesis of the 3-nitro derivative of 3-carboxy 4-quinolones has been developed by the quantitative use of copper acetate and silver nitrate in water.
Collapse
Affiliation(s)
- Chandra S. Azad
- Division of Medicinal and Process Chemistry CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | | | - Imran A. Khan
- Division of Medicinal and Process Chemistry CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Pawan K. Doharey
- Division of Biochemistry
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Jitendra K. Saxena
- Division of Biochemistry
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Anil K. Saxena
- Division of Medicinal and Process Chemistry CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| |
Collapse
|