1
|
Aliyeva M, Brandão P, Gomes JRB, Coutinho JA, Ferreira O, Pinho SP. Solubilities of Amino Acids in Aqueous Solutions of Chloride or Nitrate Salts of Divalent (Mg 2+ or Ca 2+) Cations. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2022; 67:1565-1572. [PMID: 36568723 PMCID: PMC9777878 DOI: 10.1021/acs.jced.2c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The solubilities of glycine, l-leucine, l-phenylalanine, and l-aspartic acid were measured in aqueous MgCl2, Mg(NO3)2, CaCl2,, and Ca(NO3)2 solutions with concentrations ranging from 0 to 2 mol/kg at 298.2 K. The isothermal analytical method was used combined with the refractive index measurements for composition analysis guaranteeing good accuracy. All salts induced a salting-in effect with a higher magnitude for those containing the Ca2+ cation. The nitrate anions also showed stronger binding with the amino acids, thus increasing their relative solubility more than the chloride anions. In particular, calcium nitrate induces an increase in the amino acid solubility from 2.4 (glycine) to 4.6 fold (l-aspartic acid) compared to the corresponding value in water. Amino acid solubility data in aqueous MgCl2 and CaCl2 solutions collected from the open literature were combined with that from this work, allowing us to analyze the relations between the amino acid structure and the salting-in magnitude.
Collapse
Affiliation(s)
- Mehriban Aliyeva
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Brandão
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José R. B. Gomes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A.
P. Coutinho
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Aliyeva M, Brandão P, Gomes JRB, Coutinho JAP, Ferreira O, Pinho SP. Electrolyte Effects on the Amino Acid Solubility in Water: Solubilities of Glycine, l-Leucine, l-Phenylalanine, and l-Aspartic Acid in Salt Solutions of (Na +, K +, NH 4+)/(Cl –, NO 3–). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mehriban Aliyeva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Brandão
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José R. B. Gomes
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- CICECO − Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Guzmán-Lucero D, Guzmán-Pantoja J, Velázquez HD, Likhanova NV, Bazaldua-Domínguez M, Vega-Paz A, Martínez-Palou R. Isobutane/butene alkylation reaction using ionic liquids as catalysts. Toward a sustainable industry. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
The cation effect on the solubility of glycylglycine and N-acetylglycine in aqueous solution: Experimental and molecular dynamics studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Wu H, Shen Y, Wang D, Herrmann H, Goldman RD, Weitz DA. Effect of Divalent Cations on the Structure and Mechanics of Vimentin Intermediate Filaments. Biophys J 2020; 119:55-64. [PMID: 32521238 DOI: 10.1016/j.bpj.2020.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
Divalent cations behave as effective cross-linkers of intermediate filaments (IFs) such as vimentin IF (VIF). These interactions have been mostly attributed to their multivalency. However, ion-protein interactions often depend on the ion species, and these effects have not been widely studied in IFs. Here, we investigate the effects of two biologically important divalent cations, Zn2+ and Ca2+, on VIF network structure and mechanics in vitro. We find that the network structure is unperturbed at micromolar Zn2+ concentrations, but strong bundle formation is observed at a concentration of 100 μM. Microrheological measurements show that network stiffness increases with cation concentration. However, bundling of filaments softens the network. This trend also holds for VIF networks formed in the presence of Ca2+, but remarkably, a concentration of Ca2+ that is two orders higher is needed to achieve the same effect as with Zn2+, which suggests the importance of salt-protein interactions as described by the Hofmeister effect. Furthermore, we find evidence of competitive binding between the two divalent ion species. Hence, specific interactions between VIFs and divalent cations are likely to be an important mechanism by which cells can control their cytoplasmic mechanics.
Collapse
Affiliation(s)
- Huayin Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Yinan Shen
- Department of Physics, Harvard University, Cambridge, Massachusetts
| | - Dianzhuo Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Harald Herrmann
- Division of Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Department of Physics, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
6
|
Lin J, Huang K, Sun P, Liu H. Phase separation dynamics in oil-polymer-salt-water three-liquid-phase system: Effect of phase-forming salt. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wayment-Steele HK, Jing Y, Swann MJ, Johnson LE, Agnarsson B, Svedhem S, Johal MS, Kunze A. Effects of Al(3+) on Phosphocholine and Phosphoglycerol Containing Solid Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1771-1781. [PMID: 26783873 DOI: 10.1021/acs.langmuir.5b03999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aluminum has attracted great attention recently as it has been suggested by several studies to be associated with increased risks for Alzheimer's and Parkinson's disease. The toxicity of the trivalent ion is assumed to derive from structural changes induced in lipid bilayers upon binding, though the mechanism of this process is still not well understood. In the present study we elucidate the effect of Al(3+) on supported lipid bilayers (SLBs) using fluorescence microscopy, the quartz crystal microbalance with dissipation (QCM-D) technique, dual-polarization interferometry (DPI), and molecular dynamics (MD) simulations. Results from these techniques show that binding of Al(3+) to SLBs containing negatively charged and neutral phospholipids induces irreversible changes such as domain formation. The measured variations in SLB thickness, birefringence, and density indicate a phase transition from a disordered to a densely packed ordered phase.
Collapse
Affiliation(s)
- Hannah K Wayment-Steele
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
| | - Yujia Jing
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Marcus J Swann
- Swann Scientific Consulting Ltd., 110 Sandy Lane, Lymm, Cheshire, U.K
| | - Lewis E Johnson
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
- Department of Chemistry, University of Washington , 109 Bagley Hall, Seattle, Washington 98195, United States
| | - Björn Agnarsson
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Sofia Svedhem
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Malkiat S Johal
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
| | - Angelika Kunze
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
- Institute of Physical Chemistry, University of Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
8
|
Moghaddam SZ, Thormann E. Hofmeister effect on thermo-responsive poly(propylene oxide) in H2O and D2O. RSC Adv 2016. [DOI: 10.1039/c6ra02703b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Hofmeister effect of NaSCN, NaCl and NaF on poly(propylene oxide) solutions in H2O and D2O.
Collapse
Affiliation(s)
| | - Esben Thormann
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|