1
|
Hosseini-Alvand E, Khorasani MT. Fabrication of electrospun nanofibrous thermoresponsive semi-interpenetrating poly( N-isopropylacrylamide)/polyvinyl alcohol networks containing ZnO nanoparticle mats: characterization and antibacterial and cytocompatibility evaluation. J Mater Chem B 2023; 11:890-904. [PMID: 36597765 DOI: 10.1039/d2tb02179j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thermoresponsive nanofiber composites comprising biopolymers and ZnO nanoparticles with controlled release and antibacterial activity are fascinating scientific research areas. Herein, poly(N-isopropylacrylamide) (PNIPAm) was prepared and mixed with poly(vinyl alcohol) (PVA) in 75/25 and 50/50 weight ratios together with ZnO (0, 1, and 2 phr) to construct nanofiber composites. The morphology of the crosslinked nanofiber composites, ZnO content, and their mechanical behavior were assessed by SEM, EDX, and tensile analyses. The wettability results show an increment in nanofiber surface hydrophobicity by increasing the temperature above the LCST of PNIPAm. The in vitro ZnO release exhibits a faster release profile for the sample with 50 wt% PNIPAm (lower crosslinking density) compared to the one with 25 wt%. Besides, a strong interaction between PVA hydroxyl groups and ZnO can restrict the release content. However, by increasing the temperature from 28 to 32 °C, the relative ZnO release becomes half for both compositions. All crosslinked nanofiber composites demonstrated reliable biocompatibility against L929 fibroblast cells. Agar disc-diffusion and optical density methods showed thermo-controllable antibacterial activity against Staphylococcus aureus upon temperature variation between 28 and 32 °C. Furthermore, in vivo and histological results indicate the potentiality of the prepared multidisciplinary wound dressing for robust wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Ebrahim Hosseini-Alvand
- Biomaterial Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| | - Mohammad-Taghi Khorasani
- Biomaterial Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| |
Collapse
|
2
|
Zhang J, Liu J, Yan H, Wang X, Dong H. Novel Approach of Phyto-Mediated Thermo-Sensitive and Biocompatible Nano-Formulation to Improve Anti-Microbial Efficacy Against Pathogenic Bacterial for the Treatment of Wound Infections. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Design and development of novel methods for the synthesis of metal nanopartilces (MNPs) was greatly attracted by research community due to various applications. We described a greener strategy for the synthesis of silver nanoformulation (Ag NF) using leaf extract of Ziziphus zizyphus
and then surface functionalized using P(NIPAM-co-MQ). The synthesized AgNPs were characterized by UV-visible spectroscopy and Transmission electron microscopy. Further, the functionalized AgNPs were characterized XPS and x-ray diffraction studies. The design of bioactive and biocompatible
Ag nanoformulation preparations have been provide promising alternative source for bacterial-related therapies. The developed Ag NF have demonstrated predominant bactericidal action with highinhibition rate and long-term efficiency against clinically approved bacterial pathogens (S. aureus
and E. coli), which greatly contributed treatment of wound infections. The observations of the present study could provide new avenue for the antimicrobial treatment of wound therapy
Collapse
Affiliation(s)
- Jing Zhang
- Ophthalmic Clinic, Qingdao Municipal Hospital, 266071, PR China
| | - Jie Liu
- Section for Outpatients, Qingdao Municipal Hospital, 266071, PR China
| | - Hui Yan
- Operating Room, Wulian People’s Hospital, 262399, PR China
| | - Xuyu Wang
- Ophthalmic Clinic, Qingdao Municipal Hospital, 266071, PR China
| | - Huiyan Dong
- Department of Gastroenterology, Affiliated Hospital of Jining Medical College, 272007, PR China
| |
Collapse
|
3
|
Zhong X, Tong C, Liu T, Li L, Liu X, Yang Y, Liu R, Liu B. Silver nanoparticles coated by green graphene quantum dots for accelerating the healing of MRSA-infected wounds. Biomater Sci 2020; 8:6670-6682. [PMID: 33084664 DOI: 10.1039/d0bm01398f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infection, especially multidrug-resistant bacteria-induced infection, threatens human health seriously, which has posed great challenges for clinical therapy. The overuse of conventional antibiotics has given rise to bacterial resistance that severely restricts the clinical treatment options of conventional antibiotics. The development of highly effective antibacterial materials and therapeutic strategies to inhibit the multidrug-resistant bacteria-induced infections is of great urgency. Although silver nanoparticles (AgNPs) have exhibited certain effectiveness in killing multidrug-resistant bacteria, their antibacterial efficacy and biosafety are still unsatisfactory. In this work, we prepared graphene quantum dots (GQDs) by a green synthesis method with the natural polymer starch as a precursor for uniformly decorating AgNPs to form GQDs coated AgNPs (GQDs@Ag). The nanocomplex was comprehensively characterized, and its antibacterial activity and biosafety were systematically investigated. The characterization results revealed that the successfully constructed GQDs@Ag hybrids with improved dispersion and stability are composed of AgNPs closely and uniformly surrounded by the GQDs. Furthermore, in vitro and in vivo results demonstrated that GQDs@Ag hybrids with superior biosafety showed a markedly enhanced effect in killing MRSA and accelerating MRSA-infected wound healing as compared to AgNPs alone. Collectively, these results suggest that the biocompatible nanosystem of GQDs@Ag exhibits great potential in clinical application for MRSA infection.
Collapse
Affiliation(s)
- Xianghua Zhong
- School of Medicine, Hunan Normal University, Changsha, 410125, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Rezaei F, Damoogh S, Reis RL, Kundu SC, Mottaghitalab F, Farokhi M. Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication 2020; 13:015005. [PMID: 33078712 DOI: 10.1088/1758-5090/abbb82] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, the pH-sensitive vancomycin (VANCO) loaded silk fibroin-sodium alginate nanoparticles (NPs) embedded in poly(N-isopropylacrylamide) (PNIPAM) hydrogel containing epidermal growth factor (EGF) are introduced for treating chronic burn wound infections. The hybrid system was developed to control the release rates of an antibiotic and growth factor for optimal treatment of burn infections. VANCO had a pH responsive release behavior from the nanoparticle (NP) and showed higher release rate in an alkaline pH compared to the neutral pH during 10 d. About 30% of EGF was also released from the hydrogel within 20 d. The released VANCO and EGF preserved their bioactivity more than ∼ 80%. The suitable physico-chemical properties and cellular behaviors of PNIPAM hydrogel supported the proliferation and growth of the fibroblast cells. Furthermore, the higher re-epithelialization with good wound contraction rate, neovascular formation, and expression of transforming growth factor-beta were observed in S. aureus infected rat burn wound by using the hydrogel containing VANCO and EGF compared with untreated wounds and hydrogel alone. The wound infection was also significantly reduced in the groups treated with the hydrogels containing VANCO. Overall, in vitro and in vivo results suggested that developed hybrid system would be a promising construct to treat severe wound infection.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875/4413, Iran. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
5
|
Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, Xia Y, Cao M. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers (Basel) 2020; 12:polym12030580. [PMID: 32150904 PMCID: PMC7182829 DOI: 10.3390/polym12030580] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM)-based thermosensitive hydrogels demonstrate great potential in biomedical applications. However, they have inherent drawbacks such as low mechanical strength, limited drug loading capacity and low biodegradability. Formulating PNIPAM with other functional components to form composited hydrogels is an effective strategy to make up for these deficiencies, which can greatly benefit their practical applications. This review seeks to provide a comprehensive observation about the PNIPAM-based composite hydrogels for biomedical applications so as to guide related research. It covers the general principles from the materials choice to the hybridization strategies as well as the performance improvement by focusing on several application areas including drug delivery, tissue engineering and wound dressing. The most effective strategies include incorporation of functional inorganic nanoparticles or self-assembled structures to give composite hydrogels and linking PNIPAM with other polymer blocks of unique properties to produce copolymeric hydrogels, which can improve the properties of the hydrogels by enhancing the mechanical strength, giving higher biocompatibility and biodegradability, introducing multi-stimuli responsibility, enabling higher drug loading capacity as well as controlled release. These aspects will be of great help for promoting the development of PNIPAM-based composite materials for biomedical applications.
Collapse
Affiliation(s)
- Xiaomin Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Wenbo Fu
- Heze Key Laboratory of Water Pollution Treatment, Heze Vocational College, Heze 274000, China;
| | - Mingyu Yao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Zhen Ding
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Jiaming Xuan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Dongxiang Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Shengjie Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
- Correspondence: ; Tel./Fax: +86-532-86983455
| |
Collapse
|
6
|
Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110735. [PMID: 32204045 DOI: 10.1016/j.msec.2020.110735] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/30/2022]
Abstract
The emergence of bacterial resistance has become one of the top global concern, and silver nanoparticles (AgNPs) provide alternative strategies for the development of new antimicrobial agent. Herein, three small sizes (1.5-4.0 nm) of well-dispersed AgNPs were successfully synthesized using a thermo-sensitive P(NIPAM-co-MQ) copolymer with coordination ability as a stabilizer. The copolymer stabilized silver nanoparticles (AgNPs@P) displayed good thermo-sensitive characteristics and solution stability at pH = 6.5-8.0. AgNPs@P had high-efficiency and long-term antimicrobial properties for Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). In particular, AgNPs@P3 with ultrasmall size (1.59 nm) exhibited better antimicrobial activity against both normal bacteria and antibiotic-resistant bacteria with a very low MIC value of 4.05 μg/mL. Moreover, AgNPs@P also showed an interesting temperature-dependent antibacterial activity mainly owing to the effect of thermo-sensitive copolymer on AgNPs. It was found that the antibacterial activity of the AgNPs@P also was affected by the proportion of copolymer, sizes of AgNPs, and experimental temperature. The antibacterial mechanism of AgNPs@P involved a variety of ways including destroying cell membranes, internalization of AgNPs and generation of ROS. Our research provides a new perspective for the preparation of effective nanosilver antimicrobial agents.
Collapse
|
7
|
Tan M, Horvàth L, Brunetto PS, Fromm KM. Trithiocarbonate-Functionalized PNiPAAm-Based Nanocomposites for Antimicrobial Properties. Polymers (Basel) 2018; 10:E665. [PMID: 30966699 PMCID: PMC6404129 DOI: 10.3390/polym10060665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
In this study, four trithiocarbonate-functionalized PNiPAAms with different molecular weights were synthesized and used as a matrix to form composites with silver nanoparticles. Nanocomposites with several polymer-to-silver ratios P:Ag⁺ were prepared in order to evaluate the influence of silver loading. UV studies showed a thermoresponsive behavior of the nanocomposites with a thermo-reversibility according to cooling-heating cycles. Release kinetics demonstrated that the release of silver ions is mainly influenced by the size of the silver nanoparticles (AgNPs), which themselves depend on the polymer length. Antimicrobial tests against E. coli and S. aureus showed that some of the nanocomposites are antimicrobial and even full killing could be induced.
Collapse
Affiliation(s)
- Milène Tan
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Lenke Horvàth
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Priscilla S Brunetto
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
8
|
Wang K, Ji Q, Li H, Guan F, Zhang D, Feng H, Fan H. Synthesis and antibacterial activity of silver@carbon nanocomposites. J Inorg Biochem 2016; 166:64-67. [PMID: 27835776 DOI: 10.1016/j.jinorgbio.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 01/13/2023]
Abstract
In this work, hollow multiple-Ag-nanoclustes- C-shell nanocomposites (Ag@C) were synthesized by using silane coupling agent to graft carbon dots (CDs) with silver nanoparticles (AgNPs). CDs act as coating and stabilizing agent, protecting AgNPs from aggregation and oxidation. The resulting Ag@C nanocomposites demonstrate strong bactericidal effect against both gram-negative and gram-positive bacteria in the disk diffusion test. Cellular toxicity evaluation was performed using MTT assay. Meanwhile, the as-prepared Ag@C nanocomposites show a good biocompatibility.
Collapse
Affiliation(s)
- Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Qingjuan Ji
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Feng Guan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Huixia Feng
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haiyan Fan
- Chemistry Department, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
9
|
Jiang H, Zhang G, Xu B, Feng X, Bai Q, Yang G, Li H. Thermosensitive antibacterial Ag nanocomposite hydrogels made by a one-step green synthesis strategy. NEW J CHEM 2016. [DOI: 10.1039/c5nj03608a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Clay nanosheets act as a catalyst and stabilizing agent for rapid in situ synthesis of silver nanoparticles in a hydrogel matrix.
Collapse
Affiliation(s)
- Haoyang Jiang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Gongzheng Zhang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Bo Xu
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xianqi Feng
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Quanming Bai
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Guoli Yang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Huanjun Li
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
10
|
Gao S, Liu X, Zhao C, Su M, Jiang H, Wang X. Novel multifunctional nanospheres of Zn 1/3Fe 8/3O 4@Ag: synthesis, properties and application for multi-modality tumor imaging. J Mater Chem B 2016; 4:6510-6515. [DOI: 10.1039/c6tb01943a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
New multifunctional nanospheres have been designed and synthesized through a green and facile strategy, which could be readily used in multi-modality tumor imaging through near-infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) imaging.
Collapse
Affiliation(s)
- Shengping Gao
- State Key Lab of Bioelectronics (Chien-Shiung WU Laboratory)
- Southeast University
- Nanjing 210096
- China
- College of Renewable Energy and Advanced Materials
| | - Xiaoli Liu
- State Key Lab of Bioelectronics (Chien-Shiung WU Laboratory)
- Southeast University
- Nanjing 210096
- China
| | - Chunqiu Zhao
- State Key Lab of Bioelectronics (Chien-Shiung WU Laboratory)
- Southeast University
- Nanjing 210096
- China
| | - Meina Su
- State Key Lab of Bioelectronics (Chien-Shiung WU Laboratory)
- Southeast University
- Nanjing 210096
- China
| | - Hui Jiang
- State Key Lab of Bioelectronics (Chien-Shiung WU Laboratory)
- Southeast University
- Nanjing 210096
- China
| | - Xuemei Wang
- State Key Lab of Bioelectronics (Chien-Shiung WU Laboratory)
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
11
|
Zhang XY, Zheng Y, Liu CH, Wang PH, Zhu YY. Facile and large scale in situ synthesis of the thermal responsive fluorescent SiNPs/PNIPAM hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra09534h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A new type of F-SiNPs/poly(N-isopropylacrylamide) (F-SiNPs/PNIPAM) hydrogel was prepared byin situpolymerization. The composite hydrogels display visible thermal-sensitive phase transition properties.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yan Zheng
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Ping-Hua Wang
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| |
Collapse
|
12
|
Hasan J, Chatterjee K. Recent advances in engineering topography mediated antibacterial surfaces. NANOSCALE 2015; 7:15568-75. [PMID: 26372264 PMCID: PMC4642214 DOI: 10.1039/c5nr04156b] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.
Collapse
Affiliation(s)
- Jafar Hasan
- Department of Materials Engineering , Indian Institute of Science , Bangalore 560012 , India . ; Tel: +91-80-22933408
| | - Kaushik Chatterjee
- Department of Materials Engineering , Indian Institute of Science , Bangalore 560012 , India . ; Tel: +91-80-22933408
| |
Collapse
|