1
|
Bildziukevich U, Šlouf M, Rárová L, Šaman D, Wimmer Z. Nano-assembly of cytotoxic amides of moronic and morolic acid. SOFT MATTER 2023; 19:7625-7634. [PMID: 37772344 DOI: 10.1039/d3sm01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Moronic acid and morolic acid, less frequently studied plant triterpenoids, were subjected to derivation with several structural modifiers, namely, piperazine-, pyrazine-, 1H-indole- and L-methionine-based compounds. Derivation was targeted to design and prepare novel compounds capable of nano-assembling and/or displaying cytotoxicity. Formation of nanostructures has been proven for several novel target compounds that formed different types of nanostructures, either in chloroform or in water. Isometric nanoparticles with broad size distributions (12 and 25), distorted single sheets (23) or very large thin warped films (13) were formed in chloroform solutions. Sheet-like nanostructures (12 and 23), and sphere-like nanostructures (hydrogen bonding connected nanoparticles; 3, 5, 13, 21 and 25) were formed in water suspensions. Cytotoxicity was also investigated and compared with that of the parent triterpenoids, showing enhanced effect of 18 that was the most successful derivative of the prepared series with sufficient balance between its cytotoxicity in CEM (IC50 = 11.7 ± 2.4 μM), HeLa (IC50 = 9.0 ± 0.7 μM) and G-361 (IC50 = 10.6 ± 5.5 μM) cancer cell lines, and toxicity in BJ (IC50 = 43.3 ± 1.5 μM). The calculated selectivity index values for 18 are SI = 3.9 (CEM), 4.8 (HeLa) and 4.4 (G-361). Additional compounds displaying cytotoxicity were 5, 7, 9 and 15, all of them showed comparable cytotoxicity with 18, in the investigated cancer cell lines; however, they were more toxic in BJ than 18.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovský sq. 2, CZ-16206 Prague 6, Czech Republic
| | - Lucie Rárová
- Palacký University, Faculty of Science, Department of Experimental Biology, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, CZ-16628 Prague, Czech Republic.
| |
Collapse
|
2
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
3
|
Bioderived, chiral and stable 1-dimensional light-responsive nanostructures: Interconversion between tubules and twisted ribbons. J Colloid Interface Sci 2022; 623:723-734. [DOI: 10.1016/j.jcis.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
4
|
Kameta N. Stimuli-Responsive Transformable Supramolecular Nanotubes. CHEM REC 2022; 22:e202200025. [PMID: 35244334 DOI: 10.1002/tcr.202200025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Supramolecular nanotubes produced by self-assembly of organic molecules can have unique structural features such as a one-dimensional morphology with no branching, distinguishable inner and outer surfaces and membrane walls, or a structure that is hollow and has a high aspect ratio. Incorporation of functional groups that respond to external chemical or physical stimuli into the constituent organic molecules of supramolecular nanotubes allows us to drastically change the structure of the nanotubes by applying such stimuli. This ability affords an array of controllable approaches for the encapsulation, storage, and release of guest compounds, which is expected to be useful in the fields of physics, chemistry, biology, and medicine. In this article, I review the supramolecular nanotubes developed by our group that exhibit morphological transformations in response to pH, chemical reaction, light, temperature, or moisture.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
5
|
Kameta N, Kikkawa Y, Norikane Y. Photo-responsive hole formation in the monolayer membrane wall of a supramolecular nanotube for quick recovery of encapsulated protein. NANOSCALE ADVANCES 2022; 4:1979-1987. [PMID: 36133410 PMCID: PMC9419338 DOI: 10.1039/d2na00035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 06/16/2023]
Abstract
Nanotubes with a single monolayer membrane wall comprised of a synthetic glycolipid and one of two synthetic azobenzene derivatives were assembled. X-ray diffraction, infrared, UV-visible, and circular dichroism spectroscopy clarified the embedding style of the azobenzene derivatives in the membrane wall, revealing that, depending on their different intermolecular hydrogen bond strengths, one azobenzene derivative was individually dispersed whereas the other formed a J-type aggregate. The non-aggregated derivative was insensitive to UV irradiation due to tight fixation by the surrounding glycolipid. In contrast, the aggregated derivative was sensitive to UV irradiation, which induced trans-to-cis isomerization of the derivative and disassembly of the J-type aggregate. Subsequent dissociation of the derivative into the bulk solution resulted in the formation of many nanometer-scale holes in the membrane wall. Although a model protein encapsulated within the nanotubes was slowly released over time from the two open ends of the nanotubes without UV irradiation, exposure to UV irradiation resulted in faster, preferential release of the protein through the holes in the membrane wall. The present findings are expected to facilitate the development not only of efficient means of recovering guest compounds stored within nanotubes but also the development of novel stimuli-responsive capsules in biological and medical fields.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan +81-29-861-4545 +81-29-861-4478
| | - Y Kikkawa
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Y Norikane
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
6
|
Kameta N. Stimuli-Responsive Supramolecular Nanotube Capsules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
7
|
Vázquez-Tato MP, Seijas JA, Meijide F, Fraga F, de Frutos S, Miragaya J, Trillo JV, Jover A, Soto VH, Vázquez Tato J. Highly Hydrophilic and Lipophilic Derivatives of Bile Salts. Int J Mol Sci 2021; 22:6684. [PMID: 34206572 PMCID: PMC8268814 DOI: 10.3390/ijms22136684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
Lipophilicity of 15 derivatives of sodium cholate, defined by the octan-1-ol/water partition coefficient (log P), has been theoretically determined by the Virtual log P method. These derivatives bear highly hydrophobic or highly hydrophilic substituents at the C3 position of the steroid nucleus, being linked to it through an amide bond. The difference between the maximum value of log P and the minimum one is enlarged to 3.5. The partition coefficient and the critical micelle concentration (cmc) are tightly related by a double-logarithm relationship (VirtuallogP=-(1.00±0.09)log(cmcmM)+(2.79±0.09)), meaning that the Gibbs free energies for the transfer of a bile anion from water to either a micelle or to octan-1-ol differ by a constant. The equation also means that cmc can be used as a measurement of lipophilicity. The demicellization of the aggregates formed by three derivatives of sodium cholate bearing bulky hydrophobic substituents has been studied by surface tension and isothermal titration calorimetry. Aggregation numbers, enthalpies, free energies, entropies, and heat capacities, ΔCP,demic, were obtained. ΔCP,demic, being positive, means that the interior of the aggregates is hydrophobic.
Collapse
Affiliation(s)
- M. Pilar Vázquez-Tato
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (M.P.V.-T.); (J.A.S.)
| | - Julio A. Seijas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (M.P.V.-T.); (J.A.S.)
| | - Francisco Meijide
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Francisco Fraga
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain;
| | - Santiago de Frutos
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Javier Miragaya
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Juan Ventura Trillo
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Aida Jover
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| | - Victor H. Soto
- Escuela de Química, Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - José Vázquez Tato
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain; (F.M.); (S.d.F.); (J.M.); (J.V.T.); (A.J.)
| |
Collapse
|
8
|
di Gregorio MC, Cautela J, Galantini L. Physiology and Physical Chemistry of Bile Acids. Int J Mol Sci 2021; 22:1780. [PMID: 33579036 PMCID: PMC7916809 DOI: 10.3390/ijms22041780] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.
Collapse
Affiliation(s)
- Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
9
|
Gao Y, Zhao K, Yu X, Li Z, Wu T, Zhang C, Du F, Hu J. Multiple modulations of supramolecular assemblies from a natural triterpenoid-tailored bipyridinium amphiphile. J Colloid Interface Sci 2021; 584:92-102. [DOI: 10.1016/j.jcis.2020.09.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
|
10
|
Cautela J, Stenqvist B, Schillén K, Belić D, Månsson LK, Hagemans F, Seuss M, Fery A, Crassous JJ, Galantini L. Supracolloidal Atomium. ACS NANO 2020; 14:15748-15756. [PMID: 33175507 PMCID: PMC8016364 DOI: 10.1021/acsnano.0c06764] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nature suggests that complex materials result from a hierarchical organization of matter at different length scales. At the nano- and micrometer scale, macromolecules and supramolecular aggregates spontaneously assemble into supracolloidal structures whose complexity is given by the coexistence of various colloidal entities and the specific interactions between them. Here, we demonstrate how such control can be implemented by engineering specially customized bile salt derivative-based supramolecular tubules that exhibit a highly specific interaction with polymeric microgel spheres at their extremities thanks to their scroll-like structure. This design allows for hierarchical supracolloidal self-assembly of microgels and supramolecular scrolls into a regular framework of "nodes" and "linkers". The supramolecular assembly into scrolls can be triggered by pH and temperature, thereby providing the whole supracolloidal system with interesting stimuli-responsive properties. A colloidal smart assembly is embodied with features of center-linker frameworks as those found in molecular metal-organic frameworks and in structures engineered at human scale, masterfully represented by the Atomium in Bruxelles.
Collapse
Affiliation(s)
- Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, I-00185 Rome, Italy
- Division of Physical Chemistry, Department
of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Björn Stenqvist
- Division of Physical Chemistry, Department
of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Karin Schillén
- Division of Physical Chemistry, Department
of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Domagoj Belić
- Division of Physical Chemistry, Department
of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Linda K. Månsson
- Division of Physical Chemistry, Department
of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Fabian Hagemans
- Institute of Physical
Chemistry, RWTH Aachen University, DE-52056 Aachen, Germany
| | - Maximilian Seuss
- Leibniz-Institut für Polymerforschung
e.V. Institut für
Physikalische Chemie und Physik der Polymere, DE-01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung
e.V. Institut für
Physikalische Chemie und Physik der Polymere, DE-01069 Dresden, Germany
| | - Jérôme J. Crassous
- Division of Physical Chemistry, Department
of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- Institute of Physical
Chemistry, RWTH Aachen University, DE-52056 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, I-00185 Rome, Italy
| |
Collapse
|
11
|
Kameta N, Shimizu T. Time-controllable roll-up onset of polythiophene sheets into nanotubes that exhibit circularly polarized luminescence. NANOSCALE 2020; 12:2999-3006. [PMID: 31912065 DOI: 10.1039/c9nr08032e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of a polythiophene-conjugated glycolipid exclusively produced square sheets a few micrometers on each side. Seventeen hours after the sheets were dispersed in ethanol at 25 °C, they suddenly started to roll up, and eventually they were completely transformed into nanotubes. The onset timing of the roll-up was temperature-dependent. The roll-up involved rearrangement of the molecular packing within the bilayer membranes, which was accompanied by strengthening of the intermolecular hydrogen bonds, alteration of the polythiophene aggregation mode and enhancement of supramolecular chirality due to chiral packing. The nanotubes exhibited not only strong fluorescence derived from J-type aggregation of the polythiophene aromatic moiety but also circularly polarized luminescence (CPL) originating from the left-handed helicity of the polythiophene main chain backbone. Because the CPL onset was concurrent with the sheet roll-up, the CPL onset was also able to be controlled by varying the temperature. Such delayed CPL onset has never been reported in chiral supramolecular structures, in which CPL onset and helicity inversion usually begin immediately upon application of a stimulus and then progress either quickly or gradually. Our findings can be expected to facilitate the development of new stimulus-responsive supramolecular structures that can be used for delayed-action capsules or optical switching devices.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
12
|
Rahman MA, Sha Y, Jui MS, Lamm ME, Ma Y, Tang C. Facial Amphiphilicity-Induced Self-Assembly (FAISA) of Amphiphilic Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Md Anisur Rahman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ye Sha
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Moumita Sharmin Jui
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Meghan E. Lamm
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yufeng Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Cautela J, Severoni E, Redondo-Gómez C, di Gregorio MC, Del Giudice A, Sennato S, Angelini R, D'Abramo M, Schillén K, Galantini L. C-12 vs C-3 substituted bile salts: An example of the effects of substituent position and orientation on the self-assembly of steroid surfactant isomers. Colloids Surf B Biointerfaces 2019; 185:110556. [PMID: 31704607 DOI: 10.1016/j.colsurfb.2019.110556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/08/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022]
Abstract
Biomolecule derivatives are transversally used in nanotechnology. Deciphering their aggregation behavior is a crucial issue for the rational design of functional materials. To this end, it is necessary to build libraries of selectively functionalized analogues and infer general rules. In this work we enrich the highly applicative oriented collection of steroid derivatives, by reporting a rare example of C-12 selectively modified bile salt. While nature often exploits such position to encode functions, it is unusual and not trivial to prepare similar analogues in the laboratory. The introduction of a tert-butyl phenyl residue at C-12 provided a molecule with a self-assembly that remarkably switched from rigid pole-like structures to twisted ribbons at a biologically relevant critical temperature (∼25 °C). The system was characterized by microscopy and spectroscopy techniques and compared with the C-3 functionalized analogue. The twisted ribbons generate samples with a gel texture and a viscoelastic response. The parallel analysis of the two systems suggested that the observed thermoresponsive self-assemblies occur at similar critical temperatures and are probably dictated by the nature of the substituent, but involve aggregates with different structures depending on position and orientation of the substituent. This study highlights the self-assembly properties of two appealing thermoresponsive systems. Moreover, it adds fundamental insights hereto missing in the investigations of the relation between self-assembly and structure of synthetic steroids, which are valuable for the rational design of steroidal amphiphiles.
Collapse
Affiliation(s)
- Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Emilia Severoni
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Carlos Redondo-Gómez
- Escuela de Química, Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, Costa Rica
| | | | | | - Simona Sennato
- CNR-ISC Sede Sapienza, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy; Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy
| | - Roberta Angelini
- CNR-ISC Sede Sapienza, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy; Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
14
|
Travaglini L, di Gregorio MC, Severoni E, D'Annibale A, Sennato S, Tardani F, Giustini M, Gubitosi M, Del Giudice A, Galantini L. Deoxycholic acid and l-Phenylalanine enrich their hydrogel properties when combined in a zwitterionic derivative. J Colloid Interface Sci 2019; 554:453-462. [PMID: 31325679 DOI: 10.1016/j.jcis.2019.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/31/2023]
Abstract
HYPOTHESIS Sodium Deoxycholate (NaDC) and Phenylalanine (Phe) are important biological hydrogelators. NaDC hydrogels form by lowering the pH or by increasing the ionic strength. Phe gels form from saturated solution by thermal induction and slow kinetics. The resulting gels hold great potential in medicine and biology as drug carriers and models for fundamental self-assembly in pathological conditions. Based on this background it was hypothesized that a Phe substituted NaDC could provide a molecule with expanded gelling ability, merging those of the precursors. EXPERIMENTS We coupled both building blocks in a zwitterionic derivative bearing a Phe residue at the C3 carbon of NaDC. The specific zwitterionic structure, the concurrent use of Ca2+ ions for the carboxyl group coordination and the pH control generate conditions for the formation of hydrogels. The hydrogels were analyzed by combining UV and circular dichroism spectroscopies, rheology, small angle X-ray scattering and atomic force microscopy. FINDINGS Hydrogel appearance occurs in conditions that are uncovered in the case of the pure Phe and NaDC: self-standing gels form instantaneously at room temperature, in the 10-12 pH range and down to concentration of 0.17 wt%. Both thixotropic and shake resistant gels can form depending on the derivative concentration. The gels show an uncommon thermal stability in the scanned range of 20-60 °C. The reported system concurrently enriches the hydrogelation properties of two relevant building blocks. We anticipate some potential applications of such gels in materials science where coordination of metal ions can be exploited for templating inorganic nanostructures.
Collapse
Affiliation(s)
- Leana Travaglini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | | | - Emilia Severoni
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea D'Annibale
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Simona Sennato
- CNR-ISC UOS Sapienza, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy; Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy
| | - Franco Tardani
- CNR-ISC UOS Sapienza, Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy
| | - Mauro Giustini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Marta Gubitosi
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
15
|
di Gregorio MC, Travaglini L, Del Giudice A, Cautela J, Pavel NV, Galantini L. Bile Salts: Natural Surfactants and Precursors of a Broad Family of Complex Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6803-6821. [PMID: 30234994 DOI: 10.1021/acs.langmuir.8b02657] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bile salts (BSs) are naturally occurring rigid surfactants with a steroidal skeleton and specific self-assembly and interface behaviors. Using bile salts as precursors, derivatives can be synthesized to obtain molecules with specific functionalities and amphiphilic structure. Modifications on single molecules are normally performed by substituting the least-hindered hydroxyl group on carbon C-3 of the steroidal A ring or at the end of the lateral chain. This leads to monosteroidal rigid building blocks that are often able to self-organize into 1D structures such as tubules, twisted ribbons, and fibrils with helical supramolecular packing. Tubular aggregates are of particular interest, and they are characterized by cross-section inner diameters spanning a wide range of values (3-500 nm). They can form through appealing pH- or temperature-responsive aggregation and in mixtures of bile salt derivatives to provide mixed tubules with tunable charge and size. Other derivatives can be prepared by covalently linking two or more bile salt molecules to provide complex systems such as oligomers, dendrimers, and polymeric materials. The unconventional amphiphilic molecular structure imparts specific features to BSs and derivatives that can be exploited in the formulation of capsules, drug carriers, dispersants, and templates for the synthesis of nanomaterials.
Collapse
Affiliation(s)
| | - Leana Travaglini
- CNRS, ISIS UMR 7006 , Université de Strasbourg , 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Alessandra Del Giudice
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Jacopo Cautela
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Nicolae Viorel Pavel
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Luciano Galantini
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| |
Collapse
|
16
|
di Gregorio MC, Severoni E, Travaglini L, Gubitosi M, Sennato S, Mura F, Redondo-Gómez C, Jover A, Pavel NV, Galantini L. Bile acid derivative-based catanionic mixtures: versatile tools for superficial charge modulation of supramolecular lamellae and nanotubes. Phys Chem Chem Phys 2018; 20:18957-18968. [PMID: 29972162 DOI: 10.1039/c8cp02745e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembled structures formed by mixtures of cationic and anionic surfactants are interesting tools for applications requiring interactions with charged particles and molecules. Nevertheless, they present instability close to the equimolar composition and poor morphological versatility, which is generally restricted to vesicles and micelles. Against this general trend, we report on bile salt derivative based catanionic mixtures assembling in tubules and lamellae depending on the mixture composition. Electrophoretic mobility measurements prove that the composition also dictates their superficial charge, which can be tuned from negative to positive by increasing the positively charged surfactant fraction in the mixtures. The study of the catanionic aggregates was conducted by means of microscopy and spectroscopy techniques and compared to the self-assembly behaviors of the individual building blocks. This study broadens the so far small array of bile salt derivative catanionic systems, confirming their distinctive behavior in the spectrum of catanionic mixtures.
Collapse
|
17
|
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170424] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
18
|
Direct imaging and computational cryo-electron microscopy of ribbons and nanotubes. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
di Gregorio MC, Gubitosi M, Travaglini L, Pavel NV, Jover A, Meijide F, Vázquez Tato J, Sennato S, Schillén K, Tranchini F, De Santis S, Masci G, Galantini L. Supramolecular assembly of a thermoresponsive steroidal surfactant with an oppositely charged thermoresponsive block copolymer. Phys Chem Chem Phys 2018; 19:1504-1515. [PMID: 27990552 DOI: 10.1039/c6cp05665b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular rearrangements are crucial in determining the response of stimuli sensitive soft matter systems such as those formed by mixtures of oppositely charged amphiphiles. Here mixtures of this kind were prepared by mixing the cationic block copolymer pAMPTMA30-b-pNIPAAM120 and an anionic surfactant obtained by the modification of the bile salt sodium cholate. As pure components, the two compounds presented a thermoresponsive self-assembly at around 30-35 °C; a micelle formation in the case of the copolymer and a transition from fibers to tubes in the case of the bile salt derivative. When both were present in the same solution they associated into mixed aggregates that showed complex thermoresponsive features. At room temperature, the core of the aggregate was comprised of a supramolecular twisted ribbon of the bile salt derivative. The block copolymers were anchored on the surface of this ribbon through electrostatic interactions between their charged blocks and the oppositely charged heads of the bile salt molecules. The whole structure was stabilized by a corona of the uncharged blocks that protruded into the surrounding solvent. By increasing the temperature to 30-34 °C the mixed aggregates transformed into rods with smooth edges that associated into bundles and clusters, which in turn induced clouding of the solution. Circular dichroism allowed us to follow progressive rearrangements of the supramolecular organization within the complex, occurring in the range of temperature of 20-70 °C.
Collapse
Affiliation(s)
- M C di Gregorio
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - M Gubitosi
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - L Travaglini
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - N V Pavel
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - A Jover
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - F Meijide
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - J Vázquez Tato
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - S Sennato
- Department of Physics and CNR-IPCF UOS Roma, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - K Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - F Tranchini
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - S De Santis
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | | | - L Galantini
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
20
|
|
21
|
Travaglini L, Giordano C, D'Annibale A, Gubitosi M, di Gregorio MC, Schillén K, Stefanucci A, Mollica A, Pavel NV, Galantini L. Twisted nanoribbons from a RGD-bearing cholic acid derivative. Colloids Surf B Biointerfaces 2017; 159:183-190. [PMID: 28787634 DOI: 10.1016/j.colsurfb.2017.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 07/29/2017] [Indexed: 11/16/2022]
Abstract
In light of the biomedical interest for self-assembling amphiphiles bearing the tripeptide Arg-Gly-Gly (RGD), a cholic acid derivative was synthesized by introducing an aromatic moiety on the steroidal skeleton and the RGD sequence on the carboxylic function of its chain 17-24, thus forming a peptide amphiphile with the unconventional rigid amphiphilic structure of bile salts. In aqueous solution, the compound self-assembled into long twisted ribbons characterized by a very low degree of polydispersity in terms of width (≈25nm), thickness (≈4.5nm) and pitch (≈145nm). It was proposed that in the ribbon the molecules are arranged in a bilayer structure with the aromatic moieties in the interior, strongly involved in the intermolecular interaction, whereas the RGD residues are located at the bilayer-water interface. The nanostructure is significantly different from those generally provided by RGD-containing amphiphiles with the conventional peptide-tail structure, for which fibers with a circular cross-section were observed, and successfully tested as scaffolds for tissue regeneration. From previous work on the use of this kind of nanostructures, it is known that features like morphology, rigidity, epitope spacing and periodicity are important factors that dramatically affect cell adhesion and signaling. Within this context, the reported results demonstrate that bile salt-based peptide surfactants are promising building blocks in the preparation of non-trivial RGD-decorated nanoaggregates with well-defined morphologies and epitope distributions.
Collapse
Affiliation(s)
- Leana Travaglini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cesare Giordano
- Institute of Molecular Biology and Pathology, CNR, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea D'Annibale
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Marta Gubitosi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | | | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Nicolae Viorel Pavel
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
22
|
Gubitosi M, D'Annibale A, Schillén K, Olsson U, Pavel NV, Galantini L. On the stability of lithocholate derivative supramolecular tubules. RSC Adv 2017. [DOI: 10.1039/c6ra26092f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Solubility and calorimetry data provide the description of a phase map for metastable supramolecular nanotubes of biological origin.
Collapse
Affiliation(s)
- M. Gubitosi
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome
- Italy
- Division of Physical Chemistry
| | - A. D'Annibale
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome
- Italy
| | - K. Schillén
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | - U. Olsson
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | - N. V. Pavel
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome
- Italy
| | - L. Galantini
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome
- Italy
| |
Collapse
|
23
|
Properties and ionic self-assembled structures from mixture of a bola-type strong alkali dication and a branched phosphoric acid. J Colloid Interface Sci 2016; 472:157-66. [DOI: 10.1016/j.jcis.2016.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/21/2022]
|
24
|
Unsal H, Schmidt J, Talmon Y, Yildirim LT, Aydogan N. Dual-Responsive Lipid Nanotubes: Two-Way Morphology Control by pH and Redox Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5324-5332. [PMID: 27148756 DOI: 10.1021/acs.langmuir.6b00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lipid nanotubes are the preferred structures for many applications, especially biological ones, and thus have attracted much interest recently. However, there is still a significant need for developing more lipid nanotubes that are reversibly controllable to improve their functionality and usability. Here, we presented a two-way reversible morphology control of the nanotubes formed by the recently designed molecule AQUA (C25H29NO4). Because of its special design, the AQUA has both pH-sensitive and redox-active characters provided by the carboxylic acid and anthraquinone groups. Upon chemical reduction, the nanotubes turned into thinner ribbons, and this structural transformation was significantly reversible. The reduction of the AQUA nanotubes also switched the nanotubes from electrically conductive to insulative. Nanotube morphology can additionally be altered by decreasing the pH below the pKa value of the AQUA, at ∼4.9. Decreasing the pH caused the gradual unfolding of the nanotubes, and the interlayer distance in the nanotube's walls increased. This morphological change was fast and reversible at a wide pH range, including the physiological pH. Thus, the molecular design of the AQUA allowed for an unprecedented two-way and reversible morphology control with both redox and pH effects. These unique features make AQUA a very promising candidate for many applications, ranging from electronics to controlled drug delivery.
Collapse
Affiliation(s)
| | - Judith Schmidt
- Department of Chemical Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | | | | |
Collapse
|
25
|
Galantini L, di Gregorio MC, Gubitosi M, Travaglini L, Tato JV, Jover A, Meijide F, Soto Tellini VH, Pavel NV. Bile salts and derivatives: Rigid unconventional amphiphiles as dispersants, carriers and superstructure building blocks. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|