1
|
Sweeney EE, Sekhri P, Muniraj N, Chen J, Feng S, Terao J, Chin SJ, Schmidt DE, Bollard CM, Cruz CRY, Fernandes R. Photothermal Prussian blue nanoparticles generate potent multi-targeted tumor-specific T cells as an adoptive cell therapy. Bioeng Transl Med 2024; 9:e10639. [PMID: 38818122 PMCID: PMC11135148 DOI: 10.1002/btm2.10639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) is an effective tumor treatment capable of eliciting an antitumor immune response. Motivated by the ability of PBNP-PTT to potentiate endogenous immune responses, we recently demonstrated that PBNP-PTT could be used ex vivo to generate tumor-specific T cells against glioblastoma (GBM) cell lines as an adoptive T cell therapy (ATCT). In this study, we further developed this promising T cell development platform. First, we assessed the phenotype and function of T cells generated using PBNP-PTT. We observed that PBNP-PTT facilitated CD8+ T cell expansion from healthy donor PBMCs that secreted IFNγ and TNFα and upregulated CD107a in response to engagement with target U87 cells, suggesting specific antitumor T cell activation and degranulation. Further, CD8+ effector and effector memory T cell populations significantly expanded after co-culture with U87 cells, consistent with tumor-specific effector responses. In orthotopically implanted U87 GBM tumors in vivo, PBNP-PTT-derived T cells effectively reduced U87 tumor growth and generated long-term survival in >80% of tumor-bearing mice by Day 100, compared to 0% of mice treated with PBS, non-specific T cells, or T cells expanded from lysed U87 cells, demonstrating an enhanced antitumor efficacy of this ATCT platform. Finally, we tested the generalizability of our approach by generating T cells targeting medulloblastoma (D556), breast cancer (MDA-MB-231), neuroblastoma (SH-SY5Y), and acute monocytic leukemia (THP-1) cell lines. The resulting T cells secreted IFNγ and exerted increased tumor-specific cytolytic function relative to controls, demonstrating the versatility of PBNP-PTT in generating tumor-specific T cells for ATCT.
Collapse
Affiliation(s)
- Elizabeth E. Sweeney
- Department of Biochemistry & Molecular Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Palak Sekhri
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Nethaji Muniraj
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jie Chen
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Sally Feng
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Joshua Terao
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Samantha J. Chin
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Danielle E. Schmidt
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Catherine M. Bollard
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Conrad Russell Y. Cruz
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Rohan Fernandes
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
2
|
Fatima H, Rizwan Azhar nvestigation M, Cao C, Shao Z. ZnHCF@PB nanoparticles with reduced bandgap as a promising photocatalyst for the degradation of conventional and emerging water contaminants. J Colloid Interface Sci 2022; 631:258-268. [DOI: 10.1016/j.jcis.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
3
|
Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J Control Release 2022; 351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
|
4
|
Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Li Y, Guo R, Deng C, Li D, Wu H. A Prussian blue nanoparticles-based fluorescent nanoprobe for monitoring microRNA-92a and microRNA-21. ANAL SCI 2022; 38:497-504. [PMID: 35359267 DOI: 10.2116/analsci.20p455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
Since microRNA-92a (miR-92a) and microRNA-21 (miR-21) are crucial biomarkers for colorectal cancer (CRC), monitoring miR-92a and miR-21 in serum is very significant for the early diagnosis of CRC. In this work, we developed a simple and sensitive fluorescent biosensor for the detection of miR-92a and miR-21 based on the quenching ability of Prussian blue nanoparticles (PBNPs) to fluorophores. Carboxyl fluorescein (FAM)-modified ssDNA (P-92a) and Cyanine 5 (Cy5)-modified ssDNA (P-21) were completely complementary to miR-92a and miR-21 separately. They were adsorbed on PBNPs surface by the binding of PO43- in DNA and Fe3+ in PBNPs to fabricate the P-92a + P-21@PBNPs sensing system. The fluorescence responses from P-92a + P-21@PBNPs show good selection to miR-92a and a great linear process with the miR-92a concentration ranging from 1 to 30 nM (ΔF = 10.978 cmiR-92a + 71.457). Meanwhile, the fluorescence responses from P-92a + P-21@PBNPs is linearly relative to miR-21 from 3 to 30 nM; the linear equation is ΔF = 5.7560 cmiR-21 + 48.729. Furthermore, the detections of miR-92a and miR-21 added in serum samples were achieved. In summary, this method is sensitive, highly specific, time-saving, cost-effective and applicable for the detection of miR-92a and miR-21. Therefore, this present sensor was expected to be used in clinical applications, which lays a potential foundation for an early diagnosis of cancer.
Collapse
Affiliation(s)
- Yao Li
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Dai Li
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huiyun Wu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, People's Republic of China
| |
Collapse
|
6
|
Sohini Chakraborty, Mathew MM, Simon R, George N, Vadakkekara A, Mary NL. Antibacterial Activity of Polymer Blend Nanocomposites with the Incorporation of Bentonite and Gold Nanorods. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mamontova E, Rodríguez-Castillo M, Oliviero E, Guari Y, Larionova J, Monge M, Long J. Designing heterostructured core@satellite Prussian Blue Analogue@Au–Ag nanoparticles: Effect on the magnetic properties and catalytic activity. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00008j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prussian Blue Analogue@Au–Ag nanoparticles: Effect on the magnetic properties and catalytic activity.
Collapse
Affiliation(s)
| | - Maria Rodríguez-Castillo
- Departamento de Química
- Universidad de La Rioja
- Centro de Investigación en Síntesis Química (CISQ)
- Complejo Científico-Tecnológico
- Logroño
| | | | | | | | - Miguel Monge
- Departamento de Química
- Universidad de La Rioja
- Centro de Investigación en Síntesis Química (CISQ)
- Complejo Científico-Tecnológico
- Logroño
| | | |
Collapse
|
8
|
Wang X, Cheng L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213393] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Busquets MA, Estelrich J. Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discov Today 2020; 25:1431-1443. [PMID: 32492486 DOI: 10.1016/j.drudis.2020.05.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
Abstract
Prussian blue nanoparticles (PBNPs) are a nanomaterial that presents unique properties and an excellent biocompatibility. They can be synthesized in mild conditions and can be derivatized with polymers and/or biomolecules. PBNPs are used in biomedicine as therapy and diagnostic agents. In biomedical imaging, PBNPs constitute contrast agents in photoacoustic and magnetic resonance imaging (MRI). They are a good adsorbent to be used as antidotes for poisoning with cesium and/or thallium ions. Moreover, the ability to convert energy into heat makes them useful photothermal agents (PAs) in photothermal therapy (PTT) or as nonantibiotic substances with antibacterial properties. Finally, PBNPs can be both reduced to Prussian white and oxidized to Prussian green. A large window of redox potential exists between reduction and oxidation, which result in the enzyme-like characteristics of these NPs.
Collapse
Affiliation(s)
- Maria Antònia Busquets
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology, IN2UB, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Joan Estelrich
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology, IN2UB, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
10
|
Khafaji M, Zamani M, Golizadeh M, Bavi O. Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. Biophys Rev 2019; 11:335-352. [PMID: 31102198 PMCID: PMC6557961 DOI: 10.1007/s12551-019-00532-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard, inorganic nanostructures have been of special interest for CT-PTT, owing to their high thermal conversion efficiency, application in bio-imaging, versatility, and ease of synthesis and surface modification. In addition to being used as the first type of CT-PTT agents, they also include the most novel CT-PTT systems as the potentials of new inorganic nanomaterials are being more and more discovered. Considering the variety of inorganic nanostructures introduced for CT-PTT applications, enormous effort is needed to perform translational research on the most promising nanomaterials and to comprehensively evaluate the potentials of newly introduced ones in preclinical studies. This review provides an overview of most novel strategies used to employ inorganic nanostructures for cancer CT-PTT as well as cancer imaging and discusses current challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Mona Khafaji
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Masoud Zamani
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Mortaza Golizadeh
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
11
|
A paper-based photothermal array using Parafilm to analyze hyperthermia response of tumour cells under local gradient temperature. Biomed Microdevices 2018; 20:68. [PMID: 30094581 DOI: 10.1007/s10544-018-0311-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Temperature is a critical extrinsic physical parameter that determines cell fate. Hyperthermia therapy has become an efficient treatment for tumor ablation. To understand the response of tumor cells under thermal shocks, we present a paper-based photothermal array that can be conveniently coupled with commercial 96-well cell culture plates. This paper chip device was fabricated in one step using Parafilm® and Kimwipers® based on a heat lamination strategy. Liquid was completely adsorbed and confined within the cellulose fibres of hydrophilic regions. Then, Prussian blue nanoparticles (PB NPs) as the photothermal initiator were introduced into the loading wells, and thermal energy was generated via near infrared (NIR) laser irradiation. After assembling the paper device with a 96-well plate, the temperature of each well could be individually controlled by varying the loading amount of PB NPs and laser irradiation time. As a proof-of-concept study, the effects of local thermal shocks on HeLa cells were investigated using MTT cell viability assay and Live/Dead cell staining. The variation of cell viability could be monitored in situ with controllable temperature elevation. The proposed paper photothermal array loaded with thermal initiators represents an enabling tool for investigating the hyperthermia responses of biological cells. Moreover, the facile fabrication technique for paper patterning is advantageous for customizing high-throughput microfluidic paper-based analytical devices (μPADs) with extremely low cost.
Collapse
|
12
|
Dacarro G, Taglietti A, Pallavicini P. Prussian Blue Nanoparticles as a Versatile Photothermal Tool. Molecules 2018; 23:E1414. [PMID: 29891819 PMCID: PMC6099709 DOI: 10.3390/molecules23061414] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 01/31/2023] Open
Abstract
Prussian blue (PB) is a coordination polymer studied since the early 18th century, historically known as a pigment. PB can be prepared in colloidal form with a straightforward synthesis. It has a strong charge-transfer absorption centered at ~700 nm, with a large tail in the Near-IR range. Irradiation of this band results in thermal relaxation and can be exploited to generate a local hyperthermia by irradiating in the so-called bio-transparent Near-IR window. PB nanoparticles are fully biocompatible (PB has already been approved by FDA) and biodegradable, this making them ideal candidates for in vivo use. While papers based on the imaging, drug-delivery and absorbing properties of PB nanoparticles have appeared and have been reviewed in the past decades, a very recent interest is flourishing with the use of PB nanoparticles as photothermal agents in biomedical applications. This review summarizes the syntheses and the optical features of PB nanoparticles in relation to their photothermal use and describes the state of the art of PB nanoparticles as photothermal agents, also in combination with diagnostic techniques.
Collapse
Affiliation(s)
- Giacomo Dacarro
- inLAB-Inorganic Nanochemistry Laboratory, Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy.
| | - Angelo Taglietti
- inLAB-Inorganic Nanochemistry Laboratory, Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy.
| | - Piersandro Pallavicini
- inLAB-Inorganic Nanochemistry Laboratory, Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy.
- CHT, Centre for Health Technologies, Università di Pavia, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Lambruschini C, Villa S, Banfi L, Canepa F, Morana F, Relini A, Riani P, Riva R, Silvetti F. Enzymatically promoted release of organic molecules linked to magnetic nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:986-999. [PMID: 29719751 PMCID: PMC5905276 DOI: 10.3762/bjnano.9.92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Magnetite-based magnetic nanoparticles have been successfully coupled to an organic system constituted of a fluorescent molecule, a tripeptide specifier and a spacer. The system is able to selectively release the fluorescent molecule upon targeted enzymatic hydrolysis promoted by a lysine/arginine specific protease.
Collapse
Affiliation(s)
- Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| | - Silvia Villa
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| | - Fabio Canepa
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| | - Fabio Morana
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| | - Annalisa Relini
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| | - Paola Riani
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| | - Renata Riva
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| | - Fulvio Silvetti
- Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31 16146 Genova, Italy
| |
Collapse
|
14
|
Xue P, Sun L, Li Q, Zhang L, Xu Z, Li CM, Kang Y. PEGylated magnetic Prussian blue nanoparticles as a multifunctional therapeutic agent for combined targeted photothermal ablation and pH-triggered chemotherapy of tumour cells. J Colloid Interface Sci 2018; 509:384-394. [DOI: 10.1016/j.jcis.2017.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022]
|
15
|
Santha Moorthy M, Hoang G, Subramanian B, Bui NQ, Panchanathan M, Mondal S, Thi Tuong VP, Kim H, Oh J. Prussian blue decorated mesoporous silica hybrid nanocarriers for photoacoustic imaging-guided synergistic chemo-photothermal combination therapy. J Mater Chem B 2018; 6:5220-5233. [DOI: 10.1039/c8tb01214h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, Prussian blue decorated mesoporous silica PB@MSH-EDA NPs are fabricated for efficient photoacoustic imaging guided chemo-photothermal combination therapy.
Collapse
Affiliation(s)
| | - Giang Hoang
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
| | | | - Nhat Quang Bui
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University
- Busan 48513
- Korea
| | | | - Sudip Mondal
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
| | - Vy Phan Thi Tuong
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
| | - Hyehyun Kim
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University
- Busan 48513
| |
Collapse
|
16
|
Yuan F, Zhao G, Panhwar F. Enhanced killing of HepG2 during cryosurgery with Fe 3O 4-nanoparticle improved intracellular ice formation and cell dehydration. Oncotarget 2017; 8:92561-92577. [PMID: 29190938 PMCID: PMC5696204 DOI: 10.18632/oncotarget.21499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/08/2017] [Indexed: 12/17/2022] Open
Abstract
Cryosurgery is a minimally invasive treatment that utilize extreme low temperatures to destroy abnormal tissues. The clinical monitoring methods for cryosurgery are almost based on the visualization of the iceball. However, for a normal cryosurgery process, the effective killing region is always smaller than the iceball. As a result, the end of the cryosurgery process can only be judged by the surgeons according to their experience. The subjective judgement is one of the main reasons for poor estimation of tumor ablation, and it sparks high probability of recurrence and metastasis associate with cryosurgery. Being different from the previous optimization studies, we develop a novel approach with the aid of nanoparticles to enlarge the effective killing region of entire iceball, and thus it greatly decrease the difficulty of precise judgement of the cryosurgery only by applying the common clinical imaging methods. To verify this approach, both the experiments on a tissue-scale phantom with embedded living HepG2 cells in agarose and on a cell-scale cryo-microscopic freeze-thaw stage are performed. The results indicate that the introduction of the self-synthesized Fe3O4 nanoparticles significantly improved cell killing in the cryosurgery and the range of killing is extended to the entire iceball. The potential mechanism is further revealed by the cryo-microscopic experiments, which verifies the presence of Fe3O4 nanoparticles can significantly enhance the probability of intracellular ice formation and the cell dehydration during freezing hence it promote precise killing of the cells. These findings may further promote the widespread clinical application of modern cryosurgery.
Collapse
Affiliation(s)
- Fuquan Yuan
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
- Anhui Provincial Engineering Research Center for Biopreservation and Artificial Organs, Hefei 230027, Anhui, China
| | - Fazil Panhwar
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| |
Collapse
|
17
|
Rahoui N, Jiang B, Taloub N, Huang YD. Spatio-temporal control strategy of drug delivery systems based nano structures. J Control Release 2017; 255:176-201. [DOI: 10.1016/j.jconrel.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
|
18
|
Photothermal therapy improves the efficacy of a MEK inhibitor in neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Sci Rep 2016; 6:37035. [PMID: 27833160 PMCID: PMC5105126 DOI: 10.1038/srep37035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs. MEK inhibitors block activity driven by Ras, an oncogene constitutively activated in NF1-associated MPNSTs, while PTT serves as a minimally invasive method to ablate cancer cells. Our rationale for combining these seemingly disparate techniques for MPNSTs is based on several reports demonstrating the efficacy of systemic chemotherapy with local PTT. We combine the MEK inhibitor, PD-0325901 (PD901), with Prussian blue nanoparticles (PBNPs) as PTT agents, to block MEK activity and simultaneously ablate MPNSTs. Our data demonstrate the synergistic effect of combining PD901 with PBNP-based PTT, which converge through the Ras pathway to generate apoptosis, necrosis, and decreased proliferation, thereby mitigating tumor growth and increasing survival of MPNST-bearing animals. Our results suggest the potential of this novel local-systemic combination “nanochemotherapy” for treating patients with MPNSTs.
Collapse
|
19
|
Maaoui H, Jijie R, Pan GH, Drider D, Caly D, Bouckaert J, Dumitrascu N, Chtourou R, Szunerits S, Boukherroub R. A 980 nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles. J Colloid Interface Sci 2016; 480:63-68. [DOI: 10.1016/j.jcis.2016.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/08/2023]
|
20
|
Long J, Guari Y, Guérin C, Larionova J. Prussian blue type nanoparticles for biomedical applications. Dalton Trans 2016; 45:17581-17587. [PMID: 27278267 DOI: 10.1039/c6dt01299j] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prussian blue type nanoparticles are exciting nano-objects that combine the advantages of molecule-based materials and nanochemistry. Here we provide a short overview focalizing on the recent advances of these nano-objects designed for biomedical applications and give an outlook on the future research orientations in this domain.
Collapse
Affiliation(s)
- J Long
- Institut Charles Gerhardt Montpellier (ICGM), UMR 5253, Ingénierie Moléculaire et Nano-Objets, Université de Montpellier, place Eugène Bataillon, Montpellier, France.
| | | | | | | |
Collapse
|
21
|
Tao F, Zhang Y, Zhang F, An Y, Dong L, Yin Y. Structural evolution from CuS nanoflowers to Cu9S5 nanosheets and their applications in environmental pollution removal and photothermal conversion. RSC Adv 2016. [DOI: 10.1039/c6ra09092c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The influence of crystal phase and morphologies from 3D CuS nanoflowers to Cu9S5 nanosheets with hexagonal holes on their photothermal conversion and photocatalytic activity were systemically investigated.
Collapse
Affiliation(s)
- Fujun Tao
- College of Ocean Science and Engineering
- Shanghai Maritime University
- Shanghai
- P. R. China
| | - Yuliang Zhang
- College of Ocean Science and Engineering
- Shanghai Maritime University
- Shanghai
- P. R. China
| | - Fuhua Zhang
- College of Ocean Science and Engineering
- Shanghai Maritime University
- Shanghai
- P. R. China
| | - Yan An
- College of Ocean Science and Engineering
- Shanghai Maritime University
- Shanghai
- P. R. China
| | - Lihua Dong
- College of Ocean Science and Engineering
- Shanghai Maritime University
- Shanghai
- P. R. China
| | - Yansheng Yin
- College of Ocean Science and Engineering
- Shanghai Maritime University
- Shanghai
- P. R. China
| |
Collapse
|
22
|
Xue P, Bao J, Zhang L, Xu Z, Xu C, Zhang Y, Kang Y. Functional magnetic Prussian blue nanoparticles for enhanced gene transfection and photothermal ablation of tumor cells. J Mater Chem B 2016; 4:4717-4725. [DOI: 10.1039/c6tb00982d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional magnetic Prussian blue nanoparticles as a gene carrier and photothermal agent for multi-modal cancer treatment under magnetic targeting.
Collapse
Affiliation(s)
- Peng Xue
- Faculty of Materials and Energy
- Institute for Clean Energy and Advanced Materials
- Southwest University
- Beibei
- China
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Lei Zhang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Zhigang Xu
- Faculty of Materials and Energy
- Institute for Clean Energy and Advanced Materials
- Southwest University
- Beibei
- China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yuejun Kang
- Faculty of Materials and Energy
- Institute for Clean Energy and Advanced Materials
- Southwest University
- Beibei
- China
| |
Collapse
|