1
|
Lim M, Ma Z, O'Connell G, Yuwono JA, Kumar P, Jalili R, Amal R, Daiyan R, Lovell EC. Ru-Induced Defect Engineering in Co 3O 4 Lattice for High Performance Electrochemical Reduction of Nitrate to Ammonium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401333. [PMID: 38602227 DOI: 10.1002/smll.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Amidst these growing sustainability concerns, producing NH4 + via electrochemical NO3 - reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber-Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4 + production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy-efficient NO3RR-to-NH4 + pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4 + production rate (98 nmol s-1 cm-2), selectivity (97.5%) and current density (≈100 mA cm-2) at -1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4 + yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.
Collapse
Affiliation(s)
- Maggie Lim
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Zhipeng Ma
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - George O'Connell
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jodie A Yuwono
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Priyank Kumar
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rouhollah Jalili
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Li Y, Ma H, Li Q, Yan G, Guo S. One-step synthesis of Pt-Nd co-doped Ti/SnO 2-Sb nanosphere electrodes used to degrade nitrobenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4528-4538. [PMID: 38102431 DOI: 10.1007/s11356-023-31406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Ti/SnO2-Sb electrodes possess high catalytic activity and efficiently degrade nitrobenzene (NB); however, their low service life limits their wide application. In this study, we used one-step hydrothermal synthesis to successfully prepare Pt-Nd co-doped Ti/SnO2-Sb nanosphere electrodes. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were applied to characterize the surface morphology, microstructure, and chemical composition of the electrodes, respectively. The electrochemical activity and stability of the electrodes were characterized via linear sweep and cyclic voltammetry, electrochemical impedance spectroscopy, and an accelerated service life test; their performance for NB degradation was also studied. An appropriate amount of Pt-Nd co-doping refined the average grain size of SnO2 and formed a uniform and compact coating on the electrode surface. The oxygen evolution potential, total voltammetric charge, and electron transfer resistance of the Ti/SnO2-Sb-Nd-Pt electrodes were 1.88 V, 3.77 mC/cm2, and 11.50 Ω, respectively. Hydroxy radical was the main active radical species during the electrolytic degradation of nitrobenzene with Ti/SnO2-Sb-Nd-Pt. After Pt-Nd co-doping, the accelerated service life of the electrodes was extended from 8.0 min to 78.2 h (500 mA/cm2); although the NB degradation rate decreased from 94.1 to 80.6%, the total amount of theoretical catalytic degradation of NB in the effective working time increased from 17.4 to 8754.1 mg/cm2. These findings reveal good application potential for the electrodes and provide a reference for developing efficient and stable electrode materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Hairun Ma
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qianwei Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Guangxu Yan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
3
|
Hu Z, Guo C, Wang P, Guo R, Liu X, Tian Y. Electrochemical degradation of methylene blue by Pb modified porous SnO 2 anode. CHEMOSPHERE 2022; 305:135447. [PMID: 35753421 DOI: 10.1016/j.chemosphere.2022.135447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A significant number of pollutants in wastewater can be electrocatalytically oxidized by SnO2-Sb, a relatively inactive electrode. However, the arduous process of environmental remediation due to poor electrochemical performance and short service life of the traditional Ti/SnO2-Sb electrode. In this work the SnO2 electrode with a micron-sized sphere structure was prepared by in-situ hydrothermal. The results of the study that the electrode (Pb-10%) synthesized from the precursor solution in which the Pb:Sn molar ratio is 10% exhibits excellent electrooxidation properties. Impressiveing, the Pb-10% electrode displayed the small charge transfer resistance (10.71 Ω) and the high oxygen evolution potential (2.26 V vs. SCE). Thus, the electrochemical degradation experiment demonstrates that 100 mg L-1 MB was degraded by Pb-10% electrode under the condition of initial pH = 5, and the decolorization rate reached 94.6%. Moreover, the influence of different parameters such as Pb doping amount, initial pH value of solution, initial concentration of MB and inorganic ions on degradation efficiency were also explored, in turn the practical application of electrodes in the field of purifying water resources is optimized. It is worth noting that the service life of the optimized electrode (100 mA cm-2, 0.5 M H2SO4, 90 h) is about 12 times longer than that of the bare electrode (Sn-Sb). Therefore, the high-performance Ti/SnO2-Sb electrode prepared in this work possesses vast application prospects in the electrocatalytic oxidation.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Peng Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Ye Tian
- The First Hospital of Qinhuangdao, 066099, China
| |
Collapse
|
4
|
Morphology effects of in situ hydrothermally treated hierarchical TiO2 nanofilms on their photoelectrochemical cathodic protection performance against 304 stainless steel corrosion. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
|
6
|
Man S, Zeng X, Yin Z, Yang H, Bao H, Xu K, Wang L, Ge X, Mo Z, Yang W, Li X. Preparation of a novel Ce and Sb co-doped SnO2 nanoflowers electrode by a two-step (hydrothermal and thermal decomposition) method for organic pollutants electrochemical degradation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhang Z, Wang Z, Sun Y, Jiang S, Shi L, Bi Q, Xue J. Preparation of a novel Ni/Sb co-doped Ti/SnO2 electrode with carbon nanotubes as growth template by electrodeposition in a deep eutectic solvent. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Sun Y, Zhang S, Jin B, Cheng S. Efficient degradation of polyacrylamide using a 3-dimensional ultra-thin SnO 2-Sb coated electrode. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125907. [PMID: 34492842 DOI: 10.1016/j.jhazmat.2021.125907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Polyacrylamide (PAM) is widely used in polymer flooding processes to increase oil recovery while the byproduct of PAM-containing wastewater is a serious environmental issue. In this study, electrochemical oxidation process (EAOP) was applied for treating PAM wastewater using a new type of 3-dimensional ultra-thin SnO2-Sb electrode. Nano-sized catalysts were evenly dispersed both on the surface and inside of a porous Ti filter forming nano-thickness catalytic layer that enhances the utilization and bonding of catalysts. This porous Ti electrode showed 20% improved OH· production and 16.3 times increased accelerated service life than the planar Ti electrode. Using this electrode to treat 100 mg L-1 PAM, the TOC removal efficiency reached over 99% within 3 h under current density of 20 mA cm-2. The EAOP could fastly break the long-chain PAM molecules into small molecular intermediates. With the porous electrode treating 5 g L-1 PAM under current density of 30 mA cm-2, EAOP reduced 94.2% of average molecular weight in 1 h and 92.0% of solution viscosity in 0.5 h. Moreover, the biodegradability of PAM solution was significantly improved as the solution BOD5/COD ratio raised from 0.05 to 0.41 after 4 h treatment. The degradation pathway of PAM was also investigated.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China; PowerChina Huadong Engineering Co. Ltd., Hangzhou 310014, PR China
| | - Shudi Zhang
- School of Life Sciences, Anhui University, Anhui 230601, PR China
| | - Beichen Jin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
9
|
dos Reis MN, Ramos Neto AS, Vasconcelos VM, Dória AR, O. S. Santos G, dos Santos EA, Eguiluz KI, Salazar-Banda GR. Ti/Ru0.7M0.3O2 (M = Ir or Ti) anodes made by Pechini and ionic liquid methods: Uneven catalytic activity and stability. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Preparation of Ti/SnO2-Sb/Rare Earth Electrodes Containing Different Contents of Ni Intermediate Layer for Efficient Electrochemical Decolorization of Rhodamine B. J CHEM-NY 2021. [DOI: 10.1155/2021/2672674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Water contamination by dyes discharged from many industries is an environmental issue of great matter. Electrochemical oxidation is an advanced approach for wastewater treatment. In this study, the composite electrodes of Ti/SnO2-Sb-Ni/rare earth have been modified using rare earth elements (Re) Gd, Ce, Eu, and Er and various molar ratios of tin and nickel intermediate layer, and their electrochemical oxidation effects were scrutinized. To analyze the decolorization performance of the electrodes, Rhodamine B (RhB) dye was utilized as a target pollutant. Accelerated life testing indicated that the longer service life could be observed in Ni (3.5%)/Re and Ni (5%)/ Re electrodes compared with other modified Ni (0%, 1%, and 2%)/Re electrodes. Compared with the color removal efficiencies of the Ni (2%)/Re electrodes, the decolorization rate of 90% after treatment for 60 min and the low energy consumption of 3.621 kW h·m−3 can be achieved at the Ni (2%)/Gd electrode under the experimental condition of 100 mg·L−1 RhB. The best decolorization rate was observed at the Ni (2%)/Re electrodes among other Ni and no adding Ni-doped Re electrodes. The characterization of the electrodes was described, consisting of surface morphology, oxygen evolution potential, and a crystallographic and elemental combination of the coatings.
Collapse
|
11
|
Li X, Yan J, Zhu K. Effects of IrO2 interlayer on the electrochemical performance of Ti/Sb-SnO2 electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Deng D, Wu X, Li M, Qian S, Tang B, Wei S, Zhang J. Electrochemical degradation of three phthalate esters in synthetic wastewater by using a Ce-doped Ti/PbO 2 electrode. CHEMOSPHERE 2020; 259:127488. [PMID: 32640376 DOI: 10.1016/j.chemosphere.2020.127488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
A Ce-doped Ti/PbO2 electrode was prepared in a deposition solution containing Ce3+ and Pb2+ ions by electrodeposition, and the surface morphology, crystal structure and elemental states were characterized by SEM, XRD and XPS. The electrode was used to investigate the simultaneous degradation of three phthalate esters (PAEs), i.e., dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP) in synthetic wastewaters. The results showed that the electrode exhibited excellent electrocatalytic activity and good reusability and stability, and the removal efficiencies of 5 mg L-1 DBP, DMP and DEP in 0.05 M Na2SO4 (pH 7) reached 98.2%, 95.8% and 81.1% at current density of 25 mA cm-2 after 10 h degradation, respectively. The degradation processes followed pseudo first-order kinetic model very well, and the observed rate constants of DBP, DEP and DMP were 0.42, 0.40 and 0.29 h-1, respectively. The energy consumption in three PAEs degradation was also assessed. The main degradation products of the three PAEs were identified by using liquid chromatography-tandem mass spectrometry, and the possible degradation pathways mainly included dealkylation, hydroxyl addition, decarboxylation and benzene ring cleavage. This work is a promising candidate for efficient treatment of multiple PAEs in wastewater and protection of the aquatic ecological environment.
Collapse
Affiliation(s)
- Dongli Deng
- College of Resources and Environment, Southwest University, Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, PR China; Faculty of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, PR China
| | - Xiaohua Wu
- College of Resources and Environment, Southwest University, Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, PR China
| | - Mingyuan Li
- College of Resources and Environment, Southwest University, Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, PR China
| | - Sheng Qian
- College of Resources and Environment, Southwest University, Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, PR China
| | - Bobin Tang
- Technical Centre, Chongqing Customs, Chongqing Engineering Technology Research Center of Import and Export Food Safety, Chongqing, 400020, PR China
| | - Shiqiang Wei
- College of Resources and Environment, Southwest University, Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, PR China
| | - Jinzhong Zhang
- College of Resources and Environment, Southwest University, Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, PR China.
| |
Collapse
|
13
|
Sun Y, Cheng S, Li L, Yu Z, Mao Z, Huang H. Facile sealing treatment with stannous citrate complex to enhance performance of electrodeposited Ti/SnO 2-Sb electrode. CHEMOSPHERE 2020; 255:126973. [PMID: 32402889 DOI: 10.1016/j.chemosphere.2020.126973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Ti/SnO2-Sb is a promising anode for electrochemical advanced oxidation process with advantages of low cost and no secondary pollution, while suffers from low work economy due to the short service life. In this study, a facile strategy was proposed to fabricate Ti/SnO2-Sb electrode with high oxidation ability and long service life based on novelly sealing electrodeposited Sn-Sb coating with stannous citrate complex. The treated Ti/SnO2-Sb electrode exhibited an accelerated service life of 41.5 h (100 mA cm-2; 0.5 M H2SO4) and a degradation rate constant for methylene blue dye of 1.02 h-1 which were respectively 11.9 and 2.5 times as that of the untreated electrode. It was found out that the complex could well repair the coating defects inside or outside and form a covering film to tighten the coating, and was then mineralized during the following calcination process to achieve a uniform, rough and highly active SnO2-Sb catalytic layer. The distinctive structure was confirmed by XRD, SEM, XPS and FT-IR. The sealing treatment could be achieved by in situ electrodepositing Sn-Sb coating from or ex situ dipping Sn-Sb coating in solution containing stannous citrate complex followed by drying in air. This study provided a novel, facile and effective strategy to enhance performance of Ti/SnO2-Sb electrode that could be easily achieved in both laboratory and industrial scales and combined with other strategies.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhengzhong Mao
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Haobin Huang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
14
|
Moura de Salles Pupo M, da Silva LM, de Oliveira Santiago Santos G, Barrios Eguiluz KI, Salazar-Banda GR. Synthesis and characterization of ternary metallic oxide electrodes containing (SnO2)93Sb5M2 (M = Ce, ta, Bi, Gd) using an ionic liquid as the precursor solvent. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1680367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Marilia Moura de Salles Pupo
- Laboratório de Eletroquímica e Nanotecnologia, LEN, Instituto de Tecnologia e Pesquisa, Aracaju, Brazil
- Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, Aracaju, Brazil
| | - Leticia Mirella da Silva
- Laboratório de Eletroquímica e Nanotecnologia, LEN, Instituto de Tecnologia e Pesquisa, Aracaju, Brazil
| | - Géssica de Oliveira Santiago Santos
- Laboratório de Eletroquímica e Nanotecnologia, LEN, Instituto de Tecnologia e Pesquisa, Aracaju, Brazil
- Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, Aracaju, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Laboratório de Eletroquímica e Nanotecnologia, LEN, Instituto de Tecnologia e Pesquisa, Aracaju, Brazil
- Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, Aracaju, Brazil
| | - Giancarlo Richard Salazar-Banda
- Laboratório de Eletroquímica e Nanotecnologia, LEN, Instituto de Tecnologia e Pesquisa, Aracaju, Brazil
- Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, Aracaju, Brazil
| |
Collapse
|
15
|
Bi Q, Guan W, Gao Y, Cui Y, Ma S, Xue J. Study of the mechanisms underlying the effects of composite intermediate layers on the performance of Ti/SnO2-Sb-La electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.122] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Influence of Cr doping on the oxygen evolution potential of SnO2/Ti and Sb-SnO2/Ti electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Mu Y, Huang C, Li H, Chen L, Zhang D, Yang Z. Electrochemical degradation of ciprofloxacin with a Sb-doped SnO2 electrode: performance, influencing factors and degradation pathways. RSC Adv 2019; 9:29796-29804. [PMID: 35531541 PMCID: PMC9071943 DOI: 10.1039/c9ra04860j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022] Open
Abstract
Sb-doped SnO2 electrodes were prepared with the practical sol–gel method and were used for the electrocatalytic degradation of ciprofloxacin (CIP) in aqueous solution. Results from the electrochemical characterization (including cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy) showed that the electrode with 16 coating times (SSO-16) had the highest oxygen evolution potential of 2.2 V (vs. SCE) and the highest electrochemically active area of 3.74 cm2. The results of scanning electron microscopy and X-ray diffraction showed that the coating times could affect the surface morphology and crystal structure of the electrodes, and the SSO-16 electrode had a denser surface, higher crystallinity, and smaller grain size (28.6 nm). Moreover, the experimental parameters for CIP degradation with SSO-16 were optimized, and the removal ratio of CIP reached to almost 100% within 60 min. In addition, the possible degradation pathways of CIP were proposed. And the stability and reusability of the SSO-16 electrode were also studied. These results are valuable for the preparation of high electrocatalytic performance electrodes by a sol–gel coating method for electrochemical degradation of antibiotics. Sb-doped SnO2 electrodes with different coating times were prepared by an optimum sol–gel method and the application on the electrocatalytic degradation of ciprofloxacin in aqueous solution were investigated.![]()
Collapse
Affiliation(s)
- Yanguang Mu
- Center for Environment and Water Resources
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Cong Huang
- Center for Environment and Water Resources
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Haipu Li
- Center for Environment and Water Resources
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Leilei Chen
- Center for Environment and Water Resources
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Ding Zhang
- Center for Environment and Water Resources
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| |
Collapse
|
18
|
Xu L, Wang Y, Zhang W. Preparation of a SnO2–Sb electrode on a novel TiO2 network structure with long service lifetime for degradation of dye wastewater. RSC Adv 2019; 9:39242-39251. [PMID: 35540643 PMCID: PMC9076081 DOI: 10.1039/c9ra05713g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
Developing effective electrodes with long service lifetime for electrochemical degradation of dyes is of paramount importance for their practical industrial applications. We constructed a novel SnO2–Sb electrode (Ti/TiO2-NW/SnO2–Sb electrode) based on a uniform TiO2 network structure decorated Ti plate (Ti/TiO2-NW) for a long-term electrocatalytic performance. The SnO2–Sb coating layer on this electrode was grown on the Ti/TiO2-NW by pulse electrodeposition. The introduction of the three-dimensional TiO2-NW enhances the bonding strength between the Ti substrate and the SnO2–Sb surface coating. An accelerated life test shows that the service life of Ti/TiO2-NW/SnO2–Sb electrode is 11.15 times longer than that of the traditional Ti/SnO2–Sb electrode. The physicochemical properties of the electrodes were characterized through SEM, EDS, XRD and HRTEM. In addition, through LSV, EIS, CV and voltammetric charge analysis, it is found that compared with the traditional electrode, the Ti/TiO2-NW/SnO2–Sb electrode possesses a higher oxygen evolution potential, a lower charge transfer resistance and a larger electrochemical active surface area. Besides, this novel electrode also exhibits an outstanding electrocatalytic oxidation ability for degradation of acid red 73 in simulated sewage. After a 5 hours' test, the removal efficiency of acid red 73 and the COD reached 98.6% and 71.8%, respectively, which were superior to those of Ti/SnO2–Sb electrode (89.1% and 58.8%). This study highlights the excellent stability of the Ti/TiO2-NW/SnO2–Sb electrode and provides an energy-efficient strategy for dye degradation. A novel TiO2 network structure modified SnO2–Sb electrode has been prepared by electrodeposition with long service lifetime and low energy consumption.![]()
Collapse
Affiliation(s)
- Li Xu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
| | - Ye Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
| | - Wen Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
| |
Collapse
|
19
|
Ammari A, Trari M. Electronic states in tin oxide thin films upon photo and electrochemical analysis. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Shao D, Zhang X, Lyu W, Zhang Y, Tan G, Xu H, Yan W. Magnetic Assembled Anode Combining PbO 2 and Sb-SnO 2 Organically as An Effective and Sustainable Electrocatalyst for Wastewater Treatment with Adjustable Attribution and Construction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44385-44395. [PMID: 30525405 DOI: 10.1021/acsami.8b14592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new electrode consisting of a Ti/PbO2 shell as main electrode (ME) and numerous Fe3O4/Sb-SnO2 granules as auxiliary electrodes (AEs) was developed for flexible electrochemical oxidation (EO) treatment of wastewater. Material and electrochemical characterizations were carried out to study the impacts of the loading amount of the AEs on the attribution and construction of the electrode. Lignin, a complex group of polymeric macromolecules, was selected as the representative actual contaminant to test the real EO capability of the assembled electrodes with different AE loading amounts. The stability and recyclability of the electrodes were also investigated. Results showed that the roughness and the surface area of the electrode were increased with the increased loading amount of AEs, while improvement of the electrode properties was achieved only with the appropriate amounts of AEs. The optimum AE loading (such as 0.25 and 0.5 g on 6 cm2 ME) boosted the EO performance of the anode toward lignin by ∼20%, making the electrode more capable in benzene ring opening. Excessive AEs were found to be unavailing, which only increased the percentage of the less accessible catalytic active sites. Moreover, a preliminary operating mechanism of this 2.5D electrode was proposed to evaluate the effect of AEs and further reveal the relationships of structure and activity of the 2.5D electrode. Finally, the electrode's lifetime was lengthened and further boosted via loading AEs and the subsequent recycling of AEs.
Collapse
Affiliation(s)
- Dan Shao
- School of Materials Science and Engineering , Shaanxi University of Science & Technology , Xi'an , Shaanxi 710021 , China
| | - Xinlei Zhang
- School of Materials Science and Engineering , Shaanxi University of Science & Technology , Xi'an , Shaanxi 710021 , China
| | - Wei Lyu
- Department of Environmental Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Yuanyuan Zhang
- School of Materials Science and Engineering , Shaanxi University of Science & Technology , Xi'an , Shaanxi 710021 , China
| | - Guoqiang Tan
- School of Materials Science and Engineering , Shaanxi University of Science & Technology , Xi'an , Shaanxi 710021 , China
| | - Hao Xu
- Department of Environmental Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Wei Yan
- Department of Environmental Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| |
Collapse
|
21
|
Influence of the calcination temperature and ionic liquid used during synthesis procedure on the physical and electrochemical properties of Ti/(RuO2)0.8–(Sb2O4)0.2 anodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Subba Rao AN, Venkatarangaiah VT. Preparation, characterization, and application of Ti/TiO 2-NTs/Sb-SnO 2 electrode in photo-electrochemical treatment of industrial effluents under mild conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11480-11492. [PMID: 29427269 DOI: 10.1007/s11356-017-1179-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Ti/TiO2-NTs/Sb-SnO2 electrode was prepared by gradient pulsed electrodeposition, and its electrochemical properties were evaluated. The catalytic activity and reusability of the electrode were tested by electrochemical oxidation (EO) and photoelectrochemical oxidation (PEO) of organics present in textile industry wastewater (TWW) and coffee bean processing industry wastewater (CWW). COD removal of ~ 41% was achieved after 5-h electrolysis under a constant applied current density of 30 mA cm-2 for TWW and 50 mA cm-2 for CWW. Nearly 14 and 18% increment in COD removal was observed under PEO for TWW and CWW, respectively. The turbidity of TWW reduced from 15 to ~ 3 NTU and the turbidity of CWW reduced from 27 to ~ 3 NTU by both EO and PEO. The % COD removal observed after 5-h electrolysis remained consistent for 7 repeated cycles; however, the catalytic activity of the electrode reduced gradually. These results suggested that the Ti/TiO2-NTs/Sb-SnO2 can be a potential electrode for the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Anantha N Subba Rao
- Department of Chemistry, Ballari Institute of Technology and Management, Jnana Gangotri Campus, Ballari-Hosapete Road, Near Allipura, Ballari, Karnataka, 583104, India
| | - Venkatesha T Venkatarangaiah
- Department of P.G. Studies and Research in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, -577451, India.
| |
Collapse
|
23
|
Influence of heating rate on the physical and electrochemical properties of mixed metal oxides anodes synthesized by thermal decomposition method applying an ionic liquid. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Alizadeh T, Nayeri S. Electrocatalytic oxidation of salicylic acid at a carbon paste electrode impregnated with cerium-doped zirconium oxide nanoparticles as a new sensing approach for salicylic acid determination. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3907-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Duan T, Ma L, Chen Y, Ma X, Hou J, Lin C, Sun M. Morphology-dependent activities of TiO2-NTs@Sb-SnO2 electrodes for efficient electrocatalytic methyl orange decolorization. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3895-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Yang K, Liu Y, Qiao J. Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.08.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Shao C, Yu J, Li X, Wang X, Zhu K. Influence of the Pt nanoscale interlayer on stability and electrical property of Ti/Pt/Sb-SnO2 electrode: A synergetic experimental and computational study. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Ahn YY, Yang SY, Choi C, Choi W, Kim S, Park H. Electrocatalytic activities of Sb-SnO2 and Bi-TiO2 anodes for water treatment: Effects of electrocatalyst composition and electrolyte. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Shao C, Chen A, Yan B, Shao Q, Zhu K. Improvement of electrochemical performance of tin dioxide electrodes through manganese and antimony co-doping. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Fabrication of dense spherical and rhombic Ti/Sb–SnO 2 electrodes with enhanced electrochemical activity by colloidal electrodeposition. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|