1
|
Zhang H, Wang L, Xie Y, Zhang S, Ning P, Wang X. Silica-supported ionic liquid for efficient gaseous arsenic oxide removal through hydrogen bonding. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134482. [PMID: 38704905 DOI: 10.1016/j.jhazmat.2024.134482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The emission of highly-toxic gaseous As2O3 (As2O3 (g)) from nonferrous metal smelting poses environmental concerns. In this study, we prepared an adsorbent (SMIL-X) by loading an ionic liquid (IL) ([HOEtMI]NTf2) into MCM-41 through an impregnation-evaporation process and then applied it to adsorb As2O3 (g). SMIL-20% exhibited an As2O3 (g) adsorption capacity of 35.48 mg/g at 400 °C, which was 490% times higher than that of neat MCM-41. Characterization of SMIL-X indicated that the IL was mainly supported on MCM-41 through O-H…O bonds formed between the hydroxyl groups (-OH) and the silanol groups (Si-OH) and the O-H…F bonds formed between the C-F groups and the Si-OH groups. The hydrogen bonds significantly contributed to the adsorption of As2O3 (g), with -NH and -OH groups forming hydrogen bonds with As-O species (i.e., N-H…O and O-H…O). This showed superior performance to traditional adsorbents that rely on van der Waals forces and chemisorption. Moreover, after exposure to high concentrations of SO2, the adsorption capacities remained at 76% of their initial values, demonstrating some sulfur resistance. This study presents an excellent adsorbent for the purification of As2O3 (g) and shows promising application potential for treating flue gas emitted by nonferrous metal smelting processes.
Collapse
Affiliation(s)
- Hui Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China
| | - Langlang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yibing Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shici Zhang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xueqian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Puozzo H, Saiev S, Bonnaud L, Beljonne D, Lazzaroni R. Integrating Benzoxazine-PDMS 3D Networks with Carbon Nanotubes for flexible Pressure Sensors. Chemistry 2024; 30:e202301791. [PMID: 37937983 DOI: 10.1002/chem.202301791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Shapeable and flexible pressure sensors with superior mechanical and electrical properties are of major interest as they can be employed in a wide range of applications. In this regard, elastomer-based composites incorporating carbon nanomaterials in the insulating matrix embody an appealing solution for designing flexible pressure sensors with specific properties. In this study, PDMS chains of different molecular weight were successfully functionalized with benzoxazine moieties in order to thermally cure them without adding a second component, nor a catalyst or an initiator. These precursors were then blended with 1 weight percent of multi-walled carbon nanotubes (CNTs) using an ultrasound probe, which induced a transition from a liquid-like to a gel-like behavior as CNTs generate an interconnected network within the matrix. After curing, the resulting nanocomposites exhibit mechanical and electrical properties making them highly promising materials for pressure-sensing applications.
Collapse
Affiliation(s)
- Hugo Puozzo
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Materia Nova Research Center, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium) E-mail: s
| | - Shamil Saiev
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium
| | - Leïla Bonnaud
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Materia Nova Research Center, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium) E-mail: s
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium
| |
Collapse
|
3
|
Fan Z, Li B, Ren D, Xu M. Recent Progress of Low Dielectric and High-Performance Polybenzoxazine-Based Composites. Polymers (Basel) 2023; 15:3933. [PMID: 37835982 PMCID: PMC10575129 DOI: 10.3390/polym15193933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
With the rapid advancement of intelligent electronics, big data platforms, and other cutting-edge technologies, traditional low dielectric polymer matrix composites are no longer sufficient to satisfy the application requirements of high-end electronic information materials, particularly in the realm of high integration and high-frequency, high-speed electronic communication device manufacturing. Consequently, resin-based composites with exceptional low dielectric properties have garnered unprecedented attention. In recent years, benzoxazine-based composites have piqued the interest of scholars in the fields of high-temperature-resistant, low dielectric electronic materials due to their remarkable attributes such as high strength, high modulus, high heat resistance, low curing shrinkage, low thermal expansion coefficient, and excellent flame retardancy. This article focuses on the design and development of modification of polybenzoxazine based on low dielectric polybenzoxazine modification methods. Studies on manufacturing polybenzoxazine co-polymers and benzoxazine-based nanocomposites have also been reviewed.
Collapse
Affiliation(s)
| | | | | | - Mingzhen Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.F.); (B.L.); (D.R.)
| |
Collapse
|
4
|
Liu H, Lao Y, Wang J, Jiang J, Yu C, Liu Y. Rational Design of Mesoporous Silica (SBA-15)/PF (Phenolic Resin) Nanocomposites by Tuning the Pore Sizes of Mesoporous Silica. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8879. [PMID: 36556683 PMCID: PMC9783265 DOI: 10.3390/ma15248879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
The development of composite materials with functional additives proved to be an effective way to improve or supplement the required properties of polymers. Herein, mesoporous silica (SBA-15) with different pore sizes were used as functional additives to prepare SBA-15/PF (phenolic resin) nanocomposites, which were prepared by in situ polymerization and then, compression molding. The physical properties and structural parameters of SBA-15 with different pore sizes were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The thermal properties of the SBA-15/PF hybrid were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The mechanical, friction, and dynamic mechanical properties of SBA-15/PF nanocomposites were also studied. The results revealed that the pore sizes of SBA-15 have a significant effect on the resulting SBA-15/PF hybrid and SBA-15/PF nanocomposites. The thermal stability of the SBA-15/PF hybrid was dramatically improved in comparison with pure PF. The friction and dynamic mechanical properties of the SBA-15/PF nanocomposites were enhanced significantly. Specifically, the glass transition temperature (Tg) of the nanocomposite increased by 19.0 °C for the SBA-15/PF nanocomposites modified with SBA-15-3. In addition, the nanocomposite exhibited a more stable friction coefficient and a lower wear rate at a high temperature. The enhancement in thermal and frictional properties for the nanocomposites is ascribed to the confinement of the PF chains or chain segments in the mesopores channels.
Collapse
Affiliation(s)
| | | | | | | | - Chuanbai Yu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yuanli Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
5
|
Zhang J, Li JQ, Wei QY, Chen Y, Jia DZ, Lin H, Zhong GJ, Li ZM. Light weight, low dielectric constant, super-robust polylactide film based on stress-induced cavitation aided by crystallization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Zeng M, Tan D, Feng Z, Chen J, Lu X, Huang Y, Xu Q. Multistructural Network Design Enables Polybenzoxazine to Achieve Low-Loss-Grade Super-High-Frequency Dielectric Properties and High Glass Transition Temperatures. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Zeng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, PR China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Dengru Tan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Zijian Feng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Jiangbing Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China
| | - Qingyu Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
7
|
Kumar S, Arumugham H, Roy D, Kannaiyan D. Synthesis and characterization of fluorine functionalized graphene oxide dispersed quinoline‐based polyimide composites having low‐k and
UV
shielding properties. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvaraj Kumar
- Department of Chemistry Thiruvalluvar University Vellore India
| | - Hariharan Arumugham
- Polymer Engineering Laboratory PSG Institute of Technology and Applied Research Coimbatore India
| | - Debmalya Roy
- Defence Materials & Stores Research & Development Establishment DMSRDE PO Kanpur India
| | | |
Collapse
|
8
|
Kurinchyselvan S, Chandramohan A, Hariharan A, Gomathipriya P, Alagar M. Mesoporous silica MCM-41-reinforced cardanol-based benzoxazine nanocomposites for low-k applications. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Zhang L, Mao J, Wang S, Zheng Y, Liu X, Cheng Y. Benzoxazine Based High Performance Materials with Low Dielectric Constant: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190422130917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interlayer dielectrics with low dielectric constant are the key to unlock the high arithmetic speed of integrated circuit, one of the kernels of modern industry. Polybenzoxazine, derived from benzoxazine precursor, is a new generation of phenolic resin that is considered as an ideal potential candidate for electronic materials due to its unique properties. However, for developing higher speed supercomputers, the dielectric property of conventional polybenzoxazine becomes the Achilles’ heel. Fortunately, the versatile design flexibility of benzoxazine chemistry provides the possibility to reduce the dielectric constant of the material. This review focuses on the recent attempts to synthesize low dielectric benzoxazine and the properties of the corresponding polybenzoxazine materials. Methods including fluorination, hydrocarbon introduction, heterocycle generation, molecular weight tailoring, copolymerization and organic-inorganic hybridization are introduced.
Collapse
Affiliation(s)
- Lei Zhang
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiale Mao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yiting Zheng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiangdong Liu
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Mohamed MG, Kuo SW. Functional Silica and Carbon Nanocomposites Based on Polybenzoxazines. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800306] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science; Center for Functional Polymers and Supramolecular Materials; National Sun Yat-Sen University; Kaohsiung 80424 Taiwan
| | - Shiao Wei Kuo
- Department of Materials and Optoelectronic Science; Center for Functional Polymers and Supramolecular Materials; National Sun Yat-Sen University; Kaohsiung 80424 Taiwan
| |
Collapse
|