1
|
Alvares DS, Monti MR, Ruggiero Neto J, Wilke N. The antimicrobial peptide Polybia-MP1 differentiates membranes with the hopanoid, diplopterol from those with cholesterol. BBA ADVANCES 2021; 1:100002. [PMID: 37082019 PMCID: PMC10074923 DOI: 10.1016/j.bbadva.2021.100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polybia-MP1 is an antimicrobial peptide that shows a decreased activity in membranes with cholesterol (CHO). Since it is now accepted that hopanoids act as sterol-surrogates in some sterol-lacking bacteria, we here inquire about the impact of Polybia-MP1 on membranes containing the hopanoid diplopterol (DP) in comparison to membranes with CHO. We found that, despite the properties induced on lipid membranes by DP are similar to those induced by CHO, the effect of Polybia-MP1 on membranes with CHO or DP was significantly different. DP did not prevent dye release from LUVs, nor the insertion of Polybia-MP1 into monolayers, and peptide-membrane affinity was higher for those with DP than with CHO. Zeta potentials ( ζ ) for DP-containing LUVs showed a complex behavior at increasing peptide concentration. The effect of the peptide on membrane elasticity, investigated by nanotube retraction experiments, showed that peptide addition softened all membrane compositions, but membranes with DP got stiffer at long times. Considering this, and the ζ results, we propose that peptides accumulate at the interface adopting different arrangements, leading to a non-monotonic behavior. Possible correlations with cell membranes were inquired testing the antimicrobial activity of Polybia-MP1 against hopanoid-lacking bacteria pre-incubated with DP or CHO. The fraction of surviving cells was lower in cultures incubated with DP compared to those incubated with CHO. We propose that the higher activity of Polybia-MP1 against some bacteria compared to mammalian cells is not only related to membrane electrostatics, but also the composition of neutral lipids, particularly the hopanoids, could be important.
Collapse
|
2
|
Song L, Xie W, Zhao Y, Lv X, Yang H, Zeng Q, Zheng Z, Yang X. Synthesis, Antimicrobial, Moisture Absorption and Retention Activities of Kojic Acid-Grafted Konjac Glucomannan Oligosaccharides. Polymers (Basel) 2019; 11:E1979. [PMID: 31805726 PMCID: PMC6960788 DOI: 10.3390/polym11121979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 12/21/2022] Open
Abstract
Kojic acid (KA) with antibacterial activities produced by fermentation was grafted onto konjac glucomannan oligosaccharide (KGO) composed of glucose and mannose linked by β-1,4 glycosidic bonds. A novel KGO derivative, konjac glucomannan oligosaccharide kojic acid (KGOK) possessing both moisture retention and antibacterial activities was synthesized. The structure of KGOK was characterized and analyzed by thermogravimetric analysis (TG), XRD, UV-vis absorption, FTIR, and 1H NMR. The analysis results suggest that KA was linked to the KGO molecular chain through a covalent bond, and the reaction site of KA was the methylol group. The studies demonstrate that KGOK maintained the excellent moisture absorption and retention properties of KGO and the good antibacterial activities of KA. The minimum inhibitory concentration (MIC) of KGOK is 2 mg/mL for Staphylococcus aureus, Staphylococcus epidermidis, Shewanella putrefaciens, and Salmonella enterica, while its MIC is 3 mg/mL for Escherichia coli. The multi-functionality of the KGOK synthesized from natural sources provides a theoretical foundation for their potential applications in the preservation of food, beverage, aquatic, and cosmetic products.
Collapse
Affiliation(s)
- Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Laboratory for Biochemical Engineering of Shandong Province, Qingdao 266042, China
- Wuqiong food Co., Ltd., Raoping 515726, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Laboratory for Biochemical Engineering of Shandong Province, Qingdao 266042, China
| | - Yukun Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xinyao Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | | | | | - Zuoxing Zheng
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Laboratory for Biochemical Engineering of Shandong Province, Qingdao 266042, China
| | - Xihong Yang
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Laboratory for Biochemical Engineering of Shandong Province, Qingdao 266042, China
| |
Collapse
|