1
|
Sun B, Zhou G, Sun L, Zhao H, Chen Y, Yang F, Zhao Y, Song Q. ABO 3 multiferroic perovskite materials for memristive memory and neuromorphic computing. NANOSCALE HORIZONS 2021; 6:939-970. [PMID: 34652346 DOI: 10.1039/d1nh00292a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unique electron spin, transfer, polarization and magnetoelectric coupling characteristics of ABO3 multiferroic perovskite materials make them promising candidates for application in multifunctional nanoelectronic devices. Reversible ferroelectric polarization, controllable defect concentration and domain wall movement originated from the ABO3 multiferroic perovskite materials promotes its memristive effect, which further highlights data storage, information processing and neuromorphic computing in diverse artificial intelligence applications. In particular, ion doping, electrode selection, and interface modulation have been demonstrated in ABO3-based memristive devices for ultrahigh data storage, ultrafast information processing, and efficient neuromorphic computing. These approaches presented today including controlling the dopant in the active layer, altering the oxygen vacancy distribution, modulating the diffusion depth of ions, and constructing the interface-dependent band structure were believed to be efficient methods for obtaining unique resistive switching (RS) behavior for various applications. In this review, internal physical dynamics, preparation technologies, and modulation methods are systemically examined as well as the progress, challenges, and possible solutions are proposed for next generation emerging ABO3-based memristive application in artificial intelligence.
Collapse
Affiliation(s)
- Bai Sun
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guangdong Zhou
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Linfeng Sun
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Feng Yang
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qunliang Song
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Lee N, Kim JH, Oh DG, Shin HJ, Choi HY, Choi S, Jo Y, Choi YJ. Tunable magnetization steps in mixed valent ferromagnet Eu 2CoMnO 6. Sci Rep 2021; 11:9408. [PMID: 33931698 PMCID: PMC8087831 DOI: 10.1038/s41598-021-88950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
Magnetic properties can be manipulated to enhance certain functionalities by tuning different material processing parameters. Here, we present the controllable magnetization steps of hysteresis loops in double-perovskite single crystals of Eu2CoMnO6. Ferromagnetic order emerges below TC ≈ 122 K along the crystallographic c axis. The difficulty in altering Co2+ and Mn4+ ions naturally induces additional antiferromagnetic clusters in this system. Annealing the crystals in different gas environments modifies the mixed magnetic state, and results in the retardation (after O2-annealing) and bifurcation (after Ar-annealing) of the magnetization steps of isothermal magnetization. This remarkable variation offers an efficient approach for improving the magnetic properties of double-perovskite oxides.
Collapse
Affiliation(s)
- Nara Lee
- Department of Physics, Yonsei University, Seoul, 03722, Korea
| | - Jong Hyuk Kim
- Department of Physics, Yonsei University, Seoul, 03722, Korea
| | - Dong Gun Oh
- Department of Physics, Yonsei University, Seoul, 03722, Korea
| | - Hyun Jun Shin
- Department of Physics, Yonsei University, Seoul, 03722, Korea
| | - Hwan Young Choi
- Department of Physics, Yonsei University, Seoul, 03722, Korea
| | - Sungkyun Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Younjung Jo
- Department of Physics, Kyungpook National University, Daegu, 41566, Korea
| | - Young Jai Choi
- Department of Physics, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
3
|
Strong magnetoelectric coupling in mixed ferrimagnetic-multiferroic phases of a double perovskite. Sci Rep 2019; 9:5456. [PMID: 30932007 PMCID: PMC6443663 DOI: 10.1038/s41598-019-41990-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/17/2019] [Indexed: 11/09/2022] Open
Abstract
Exploring new magnetic materials is essential for finding advantageous functional properties such as magnetoresistance, magnetocaloric effect, spintronic functionality, and multiferroicity. Versatile classes of double perovskite compounds have been recently investigated because of intriguing physical properties arising from the proper combination of several magnetic ions. In this study, it is observed that the dominant ferrimagnetic phase is coexisted with a minor multiferroic phase in single-crystalline double-perovskite Er2CoMnO6. The majority portion of the ferrimagnetic order is activated by the long-range order of Er3+ moments below TEr = 10 K in addition to the ferromagnetic order of Co2+ and Mn4+ moments arising at TC = 67 K, characterized by compensated magnetization at TComp = 3.15 K. The inverted magnetic hysteresis loop observed below TComp can be described by an extended Stoner-Wohlfarth model. The additional multiferroic phase is identified by the ferroelectric polarization of ~0.9 μC/m2 at 2 K. The coexisting ferrimagnetic and multiferroic phases appear to be strongly correlated in that metamagnetic and ferroelectric transitions occur simultaneously. The results based on intricate magnetic correlations and phases in Er2CoMnO6 enrich fundamental and applied research on magnetic materials through the scope of distinct magnetic characteristics in double perovskites.
Collapse
|