1
|
Han C, Yang H, Fan Y, Wang Z, Li P, Jiang J, Huang M, Xu J, Chen J, Chen L. Opposite regulation effects of Al 3+ on different types of carbon quantum dots and potential applications in information encryption. RSC Adv 2024; 14:1944-1951. [PMID: 38192313 PMCID: PMC10772954 DOI: 10.1039/d3ra07801a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024] Open
Abstract
Regulating the photoluminescence (PL) of carbon quantum dots (CQDs) through ion modification is a well-established and effective approach. Herein, we report the opposite regulation effects of Al3+ ions on the PL properties of two distinct types of CQDs (graphene quantum dots, GQDs, and nitrogen-doped carbon quantum dots of 2,3-diaminophenazine, DAP), and elucidate the underlying mechanism of the binding of Al3+ ions to different PL sites on CQDs by employing ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. Specifically, Al3+ ions are primarily situated around the oxygen-containing groups, which do not impact the π-π regions of GQDs. However, Al3+ ions are preferentially adsorbed on the top of pyridine nitrogen in the phenazine rings of DAP, thus reducing the PL regions of DAP. Based on the opposite PL effects of Al3+ on GQDs and DAP, we explore potential applications of information encryption and successfully realize multi-level information encryption and decryption, which may provide new strategies for CQDs in information security.
Collapse
Affiliation(s)
- Changdao Han
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Huan Yang
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| | - Yan Fan
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Zhikun Wang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Pei Li
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| | - Jie Jiang
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| | - Mohan Huang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Junlang Chen
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| |
Collapse
|
2
|
Yan Z, Yang X, Hua Y, Li Z, Liu Y, Lin Y. An impedance sensor based on chitosan-carbon quantum dots for the detection sialic acid in humuan serum. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Liu L, Mi Z, Guo Z, Wang J, Feng F. A label-free fluorescent sensor based on carbon quantum dots with enhanced sensitive for the determination of myricetin in real samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Lee SB, Lee HW, Darmawan BA, Lee IK, Cho SJ, Chin J, Kim SK, Park JO, Kim KS, Lee SW, Lee J, Jeon YH. NIR dye-loaded mesoporous silica nanoparticles for a multifunctional theranostic platform: Visualization of tumor and ischemic lesions, and performance of photothermal therapy. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Tang C, Zhang Y, Han J, Tian Z, Chen L, Chen J. Monitoring graphene oxide's efficiency for removing Re(VII) and Cr(VI) with fluorescent silica hydrogels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114246. [PMID: 32135431 DOI: 10.1016/j.envpol.2020.114246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/02/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Supported carbon quantum dots (CQDs), used as fluorescent sensors for the detection of metal ions, have rarely been used to remove heavy metals from water. Nitrogen-doped CQDs immobilized in hydrophilic silica hydrogels exhibited a more superior sensitivity and selectivity for the detection of Re(VII) and Cr(VI) than other metal ions, including Fe(III), Fe(II), Zn(II), Cu(II) and Mn(II). For the first time, low limits of detection (LOD) of 2.3 μM for Re(VII) detection and 65 nM for Cr(VI) detection were reported by a facile method. Based on the high selectivity of fluorescent silica hydrogels for Re(VII) and Cr(VI) detection, the removal of Re(VII) and Cr(VI) by graphene oxide (GO) in water was monitored with the hydrogels used as a turn-off fluorescent sensing platform. The consistent results of the sorption isotherms of each metal on GO, which were obtained from the fluorescence spectra and by UV absorption, further verified the possibility of monitoring metal removal by fluorescence detection. Remarkably, GO removed 1186 mg/g of Re(VII) but only 178 mg/g of Cr(VI). The density functional theory (DFT) calculations indicated that both Re(VII) and Cr(VI) formed stable bonds with silica hydrogels, confirming that the interactions between the metal ions and the substrate would promote the fluorescence quenching of the supported CQDs. On the other hand, Re(VII) interacted more strongly with the carboxyl groups of GO than Cr(VI). In addition, a real-time detection system was designed to alarm the service life of a GO filter used for Re(VII) removal.
Collapse
Affiliation(s)
- Chuanqi Tang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Yiming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Jiangang Han
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road, Ningbo, 315201, PR China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road, Ningbo, 315201, PR China
| | - Jianqiang Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China.
| |
Collapse
|
6
|
Li Z, Mu Y, Peng C, Lavin MF, Shao H, Du Z. Understanding the mechanisms of silica nanoparticles for nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1658. [PMID: 32602269 PMCID: PMC7757183 DOI: 10.1002/wnan.1658] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
As a consequence of recent progression in biomedicine and nanotechnology, nanomedicine has emerged rapidly as a new discipline with extensive application of nanomaterials in biology, medicine, and pharmacology. Among the various nanomaterials, silica nanoparticles (SNPs) are particularly promising in nanomedicine applications due to their large specific surface area, adjustable pore size, facile surface modification, and excellent biocompatibility. This paper reviews the synthesis of SNPs and their recent usage in drug delivery, biomedical imaging, photodynamic and photothermal therapy, and other applications. In addition, the possible adverse effects of SNPs in nanomedicine applications are reviewed from reported in vitro and in vivo studies. Finally, the potential opportunities and challenges for the future use of SNPs are discussed. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Ziyuan Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingwen Mu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Peng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Hua Shao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongjun Du
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Singh P, Srivastava S, Singh SK. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater Sci Eng 2019; 5:4882-4898. [PMID: 33455238 DOI: 10.1021/acsbiomaterials.9b00464] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silica nanoparticles (Si-NPs) are widely explored in biomedical applications due to their high surface area, excellent biocompatibility, and tunable pore size. The silica surface can be readily functionalized for wide range of applications such as cellular imaging, biosensing, and targeted drug delivery. This comprehensive review discusses different synthesis methodologies of Si-NPs and their surface functionalization with various functional groups. Nanosilica functionalization methods are discussed in detail, emphasizing their suitability for targeted drug delivery, cancer therapy, bioimaging, and biosensing. The toxicity assessment of nanosilica is also critically reviewed to get a clear focus before employing them for nanomedicine.
Collapse
Affiliation(s)
- Priti Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Sunil Kumar Singh
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Mansa Road, Bathinda, Punjab 151001, India
| |
Collapse
|
8
|
Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1515. [PMID: 29566308 DOI: 10.1002/wnan.1515] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 11/09/2022]
Abstract
Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Bong Geun Cha
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| |
Collapse
|
9
|
Jaleel JA, Pramod K. Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 2017; 269:302-321. [PMID: 29170139 DOI: 10.1016/j.jconrel.2017.11.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile.
Collapse
Affiliation(s)
- Jumana Abdul Jaleel
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode 673008, Kerala, India
| | - K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
10
|
Application of the chemiluminescence system composed of silicon-doped carbon dots, iron(II) and K2S2O8 to the determination of norfloxacin. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2139-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|