1
|
Jamadi Khiabani M, Soroushzadeh S, Talebi A, Samanta A. Shear-Induced Cycloreversion Leading to Shear-Thinning and Autonomous Self-Healing in an Injectable, Shape-Holding Collagen Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39377244 PMCID: PMC11492320 DOI: 10.1021/acsami.4c08066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
In vivo injectable extracellular matrix (ECM) derived hydrogels that are suitable for cell encapsulation have always been the holy grail in tissue engineering. Nevertheless, these hydrogels still fall short today of meeting three crucial criteria: (a) flexibility on the injectability time window, (b) autonomous self-healing of the injected hydrogel, and (c) shape-retention under aqueous conditions. Here we report the development of a collagen-based injectable hydrogel, cross-linked by cycloaddition reaction between furan and maleimide groups, that (a) is injectable up to 48 h after preparation, (b) can undergo complete autonomous self-healing after injection, (c) can retain its shape and size over several years when stored in the buffer, (d) can be degraded within hours when treated with collagenase, (e) is biocompatible as demonstrated by in vitro cell-culture, and (f) is completely resorbable in vivo when implanted subcutaneously in rats without causing any inflammation.
Collapse
Affiliation(s)
- Mahsa Jamadi Khiabani
- Macromolecular
Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - Sareh Soroushzadeh
- Department
of Pathology, School of Medicine, Isfahan
University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ardeshir Talebi
- Department
of Pathology, School of Medicine, Isfahan
University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ayan Samanta
- Macromolecular
Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| |
Collapse
|
2
|
Moncada D, Bouza R, Rico M, Rodríguez-Llamazares S, Pettinelli N, Aragón-Herrera A, Feijóo-Bandín S, Gualillo O, Lago F, Farrag Y, Salavagione H. Injectable Carrageenan/Green Graphene Oxide Hydrogel: A Comprehensive Analysis of Mechanical, Rheological, and Biocompatibility Properties. Polymers (Basel) 2024; 16:2345. [PMID: 39204565 PMCID: PMC11359936 DOI: 10.3390/polym16162345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
In this work, physically crosslinked injectable hydrogels based on carrageenan, locust bean gum, and gelatin, and mechanically nano-reinforced with green graphene oxide (GO), were developed to address the challenge of finding materials with a good balance between injectability and mechanical properties. The effect of GO content on the rheological and mechanical properties, injectability, swelling behavior, and biocompatibility of the nanocomposite hydrogels was studied. The hydrogels' morphology, assessed by FE-SEM, showed a homogeneous porous architecture separated by thin walls for all the GO loadings investigated. The rheology measurements evidence that G' > G″ over the whole frequency range, indicating the dominant elastic nature of the hydrogels and the difference between G' over G″ depends on the GO content. The GO incorporation into the biopolymer network enhanced the mechanical properties (ca. 20%) without appreciable change in the injectability of the nanocomposite hydrogels, demonstrating the success of the approach described in this work. In addition, the injectable hydrogels with GO loadings ≤0.05% w/v exhibit negligible toxicity for 3T3-L1 fibroblasts. However, it is noted that loadings over 0.25% w/v may affect the cell proliferation rate. Therefore, the nano-reinforced injectable hybrid hydrogels reported here, developed with a fully sustainable approach, have a promising future as potential materials for use in tissue repair.
Collapse
Affiliation(s)
- Danny Moncada
- CITENI, Grupo de Polímeros, Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Rebeca Bouza
- CITENI, Grupo de Polímeros, Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Maite Rico
- CITENI, Grupo de Polímeros, Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepción 4051381, Chile
| | - Natalia Pettinelli
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepción 4051381, Chile
| | - Alana Aragón-Herrera
- IDIS (Instituto de Investigación Sanitaria de Santiago), Cellular and Molecular Cardiology Research Unit, Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- IDIS (Instituto de Investigación Sanitaria de Santiago), Cellular and Molecular Cardiology Research Unit, Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Oreste Gualillo
- NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Francisca Lago
- IDIS (Instituto de Investigación Sanitaria de Santiago), Cellular and Molecular Cardiology Research Unit, Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Yousof Farrag
- NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Horacio Salavagione
- Departamento de Física de Polímeros, Elastómeros y Aplicaciones Energéticas, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
3
|
Yan X, Huang H, Bakry AM, Wu W, Liu X, Liu F. Advances in enhancing the mechanical properties of biopolymer hydrogels via multi-strategic approaches. Int J Biol Macromol 2024; 272:132583. [PMID: 38795882 DOI: 10.1016/j.ijbiomac.2024.132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The limited mechanical properties of biopolymer-based hydrogels have hindered their widespread applications in biomedicine and tissue engineering. In recent years, researchers have shown significant interest in developing novel approaches to enhance the mechanical performance of hydrogels. This review focuses on key strategies for enhancing mechanical properties of hydrogels, including dual-crosslinking, double networks, and nanocomposite hydrogels, with a comprehensive analysis of their underlying mechanisms, benefits, and limitations. It also introduces the classic application scenarios of biopolymer-based hydrogels and the direction of future research efforts, including wound dressings and tissue engineering based on 3D bioprinting. This review is expected to deepen the understanding of the structure-mechanical performance-function relationship of hydrogels and guide the further study of their biomedical applications.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hechun Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Amr M Bakry
- Dairy Science Department, Faculty of Agriculture, New Valley University, New Valley, El-Kharga 72511, Egypt
| | - Wanqiang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
González K, Guaresti O, Palomares T, Alonso-Varona A, Eceiza A, Gabilondo N. The role of cellulose nanocrystals in biocompatible starch-based clicked nanocomposite hydrogels. Int J Biol Macromol 2019; 143:265-272. [PMID: 31816373 DOI: 10.1016/j.ijbiomac.2019.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Starch-based nanocomposite hydrogels were successfully prepared by the Diels-Alder click cross-linking reaction between furan-functionalized starch derivative and a water-soluble tetrafunctional maleimide compound, adding cellulose nanocrystals (CNC) as nanoreinforcement. The effect of increasing the CNC content on rheological and swelling properties as well as on the morphology of the hydrogels was analyzed. Besides, in order to evaluate the applicability of the as-prepared hydrogels as delivery systems, drug release measurements and in vitro cytotoxicity assays were also performed. It was found that the prepared nanocomposite hydrogels presented higher stiffness as the CNC content increased. The incorporation of the nanocrystals modified the internal porous microstructure of the hydrogels, affecting consequently both the swelling capacity and the drug-delivery kinetics. Moreover, the prepared nanocomposite hydrogels showed non-toxic behavior, demonstrating their potential applicability in the biomedical field, especially as sustained drug delivery systems.
Collapse
Affiliation(s)
- Kizkitza González
- Department of Chemical and Environmental Engineering, 'Materials + Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| | - Olatz Guaresti
- Department of Chemical and Environmental Engineering, 'Materials + Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| | - Teodoro Palomares
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), B Sarriena s/n, Leioa 48940, Bizkaia, Spain.
| | - Ana Alonso-Varona
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), B Sarriena s/n, Leioa 48940, Bizkaia, Spain.
| | - Arantxa Eceiza
- Department of Chemical and Environmental Engineering, 'Materials + Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| | - Nagore Gabilondo
- Department of Chemical and Environmental Engineering, 'Materials + Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| |
Collapse
|
5
|
Belhout SA, Baptista FR, Devereux SJ, Parker AW, Ward AD, Quinn SJ. Preparation of polymer gold nanoparticle composites with tunable plasmon coupling and their application as SERS substrates. NANOSCALE 2019; 11:19884-19894. [PMID: 31599311 DOI: 10.1039/c9nr05014k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The controlled surface functionalisation of polystyrene beads (200 nm) with a lipoic acid derivative is used to assemble composites with between 4 to 20% loadings of citrate stabilised gold nanoparticles (13 nm-30 nm), which exhibit variable optical properties arising from interactions of the nanoparticle surface plasmon resonance (SPR). The decrease in average interparticle distance at higher loadings results in a red-shift in the SPR wavelength, which is well described by a universal ruler equation. The composite particles are shown to act as good SERS substrates for the standard analyte 4-mercaptophenol. The direct assessment of the SERS activity for individual composite particles solution is achieved by Raman optical tweezer measurements on 5.3 μm composite particles. These measurements show an increase in performance with increasing AuNP size. Importantly, the SERS activity of the individual particles compares well with the bulk measurements of samples deposited on a surface, indicating that the SERS activity arises primarily from the composite and not due to composite-composite interactions. In both studies the optimum SERS response is obtained with 30 nm AuNPs.
Collapse
Affiliation(s)
- Samir A Belhout
- School of Chemistry, University College Dublin, Dublin 4, Republic of Ireland
| | | | - Stephen J Devereux
- School of Chemistry, University College Dublin, Dublin 4, Republic of Ireland
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK.
| | - Andrew D Ward
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK.
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Republic of Ireland
| |
Collapse
|
6
|
Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial properties. Carbohydr Polym 2018; 202:372-381. [DOI: 10.1016/j.carbpol.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
|
7
|
Synthesis of stimuli–responsive chitosan–based hydrogels by Diels–Alder cross–linking `click´ reaction as potential carriers for drug administration. Carbohydr Polym 2018; 183:278-286. [DOI: 10.1016/j.carbpol.2017.12.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
|
8
|
Polymer Nanocomposites via Click Chemistry Reactions. Polymers (Basel) 2017; 9:polym9100499. [PMID: 30965802 PMCID: PMC6418640 DOI: 10.3390/polym9100499] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023] Open
Abstract
The emerging areas of polymer nanocomposites, as some are already in use in industrial applications and daily commodities, have the potential of offering new technologies with all manner of prominent capabilities. The incorporation of nanomaterials into polymeric matrix provides significant improvements, such as higher mechanical, thermal or electrical properties. In these materials, interface/interphase of components play a crucial role bringing additional features on the resulting nanocomposites. Among the various preparation strategies of such materials, an appealing strategy relies on the use of click chemistry concept as a multi-purpose toolbox for both fabrication and modulation of the material characteristics. This review aims to deliver new insights to the researchers of the field by noticing effective click chemistry-based methodologies on the preparation of polymer nanocomposites and their key applications such as optic, biomedical, coatings and sensor.
Collapse
|
9
|
Guaresti O, García–Astrain C, Palomares T, Alonso–Varona A, Eceiza A, Gabilondo N. Synthesis and characterization of a biocompatible chitosan–based hydrogel cross–linked via ‘click’ chemistry for controlled drug release. Int J Biol Macromol 2017; 102:1-9. [DOI: 10.1016/j.ijbiomac.2017.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022]
|
10
|
Linyu W, Manwen Y, Chengzhi F, Xi Y. A highly sensitive detection of chloramphenicol based on chemiluminescence immunoassays with the cheap functionalized Fe3O4@SiO2magnetic nanoparticles. LUMINESCENCE 2017; 32:1039-1044. [DOI: 10.1002/bio.3288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Wang Linyu
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering; Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Yao Manwen
- Tongji University; Shanghai People's Republic of China
| | - Fang Chengzhi
- High School Affiliated to Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Yao Xi
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering; Xi'an Jiaotong University; Xi'an People's Republic of China
| |
Collapse
|
11
|
Freudenberg U, Liang Y, Kiick KL, Werner C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8861-8891. [PMID: 27461855 PMCID: PMC5152626 DOI: 10.1002/adma.201601908] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Glycosaminoglycans (GAGs) govern important functional characteristics of the extracellular matrix (ECM) in living tissues. Incorporation of GAGs into biomaterials opens up new routes for the presentation of signaling molecules, providing control over development, homeostasis, inflammation, and tumor formation and progression. Recent approaches to GAG-based materials are reviewed, highlighting the formation of modular, tunable biohybrid hydrogels by covalent and non-covalent conjugation schemes, including both theory-driven design concepts and advanced processing technologies. Examples of the application of the resulting materials in biomedical studies are provided. For perspective, solid-phase and chemoenzymatic oligosaccharide synthesis methods for GAG-derived motifs, rational and high-throughput design strategies for GAG-based materials, and the utilization of the factor-scavenging characteristics of GAGs are highlighted.
Collapse
Affiliation(s)
- Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| | - Yingkai Liang
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States,
| | - Kristi L. Kiick
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
12
|
García-Astrain C, González K, Gurrea T, Guaresti O, Algar I, Eceiza A, Gabilondo N. Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels. Carbohydr Polym 2016; 149:94-101. [DOI: 10.1016/j.carbpol.2016.04.091] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023]
|
13
|
Zhuang Y, Shen H, Yang F, Wang X, Wu D. Synthesis and characterization of PLGA nanoparticle/4-arm-PEG hybrid hydrogels with controlled porous structures. RSC Adv 2016. [DOI: 10.1039/c6ra08404d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Here, we constructed PLGA NP crosslinked 4-arm-PEG hybrid hydrogels with adjustable porous structures, surface properties and mechanical properties.
Collapse
Affiliation(s)
- Yaping Zhuang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
14
|
Criado M, Rey JM, Mijangos C, Hernández R. Double-membrane thermoresponsive hydrogels from gelatin and chondroitin sulphate with enhanced mechanical properties. RSC Adv 2016. [DOI: 10.1039/c6ra25053j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel methodology to obtain thermoresponsive mechanically strong hydrogels of gelatin and chondroitin sulphate organized in layers.
Collapse
Affiliation(s)
- M. Criado
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - J. M. Rey
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - C. Mijangos
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - R. Hernández
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| |
Collapse
|