1
|
Sharma AK, Mehara P, Das P. Recent Advances in Supported Bimetallic Pd–Au Catalysts: Development and Applications in Organic Synthesis with Focused Catalytic Action Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ajay Kumar Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushkar Mehara
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Roy S, K. J. N, Tiwari N, Tiwari AK. Energetics and dynamics of CH4 and H2O dissociation on metal surfaces. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1765598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sudipta Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Nayanthara K. J.
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Nidhi Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Ashwani K. Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
3
|
Abstract
The low-temperature water–gas shift reaction (LTS: CO + H2O ⇌ CO2 + H2) is a key step in the purification of H2 reformate streams that feed H2 fuel cells. Supported gold catalysts were originally identified as being active for this reaction twenty years ago, and since then, considerable advances have been made in the synthesis and characterisation of these catalysts. In this review, we identify and evaluate the progress towards solving the most important challenge in this research area: the development of robust, highly active catalysts that do not deactivate on-stream under realistic reaction conditions.
Collapse
|
4
|
Ma J, Yang X, Nie Y, Wang B. The influence of a hydrophobic carrier, reactant and product during H 2O adsorption on Pd surface for the oxidative esterification of methacrolein to methyl methacrylate. Phys Chem Chem Phys 2018; 20:9965-9974. [PMID: 29619457 DOI: 10.1039/c8cp00609a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Taking the one-step oxidative esterification of methacrolein (MAL) to methyl methacrylate (MMA) as a model reaction and because H2O that was generated easily formed a film of water on the catalyst surface, which restricted the diffusion of the reactants to the active sites, the effects of the hydrophobic carrier styrene-divinylbenzene (SDB) copolymer, the reactant CH3OH and the product MMA during the adsorption of H2O on a Pd surface were investigated. For a Pd/SDB catalyst, the interactions between the active component and the carrier were first calculated using Pd4 clusters. The results implied that Pd4 clusters were chemisorbed on the SDB carrier. By comparing the adsorption energy of H2O molecules on Pd4 clusters with or without SDB, it was found that the adsorption energy of the former was reduced by about 50%, indicating that the hydrophobic carrier SDB reduced the adsorption of H2O on Pd4 clusters. This was also confirmed by the results for the partial density of states, differences in charge density and comparative Mulliken charge analysis. The influences of the reactant CH3OH and the product MMA on the adsorption of H2O were investigated using the Pd(111) surface. The results of co-adsorption simulations showed that some of the electrons on CH3OH molecules were transferred to H2O molecules that strengthened the electronic interaction between H2O molecules and the Pd surface and led to a change in the adsorption of isolated H2O molecules from physisorption to chemisorption. However, the product MMA when chemisorbed on the Pd surface had little effect on the adsorption of H2O molecules on the Pd(111) surface.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | |
Collapse
|
5
|
Barroo C, Moors M, Visart de Bocarmé T. Imaging and chemically probing catalytic processes using field emission techniques: a study of NO hydrogenation on Pd and Pd–Au catalysts. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00994a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide hydrogenation is investigated on palladium and gold–palladium alloy crystallites, i.e. the extremity of sharp tip samples aimed at modelling a single catalytic grain.
Collapse
Affiliation(s)
- Cédric Barroo
- Chemical Physics of Materials and Catalysis
- Université libre de Bruxelles
- 1050 Brussels
- Belgium
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI)
| | - Matthieu Moors
- Chemical Physics of Materials and Catalysis
- Université libre de Bruxelles
- 1050 Brussels
- Belgium
| | - Thierry Visart de Bocarmé
- Chemical Physics of Materials and Catalysis
- Université libre de Bruxelles
- 1050 Brussels
- Belgium
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI)
| |
Collapse
|
6
|
Carter JH, Althahban S, Nowicka E, Freakley SJ, Morgan DJ, Shah PM, Golunski S, Kiely CJ, Hutchings GJ. Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support. ACS Catal 2016; 6:6623-6633. [PMID: 27990317 PMCID: PMC5154324 DOI: 10.1021/acscatal.6b01275] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/03/2016] [Indexed: 11/28/2022]
Abstract
Highly active and stable bimetallic Au-Pd catalysts have been extensively studied for several liquid-phase oxidation reactions in recent years, but there are far fewer reports on the use of these catalysts for low-temperature gas-phase reactions. Here we initially established the presence of a synergistic effect in a range of bimetallic Au-Pd/CeZrO4 catalysts, by measuring their activity for selective oxidation of benzyl alcohol. The catalysts were then evaluated for low-temperature WGS, CO oxidation, and formic acid decomposition, all of which are believed to be mechanistically related. A strong anti-synergy between Au and Pd was observed for these reactions, whereby the introduction of Pd to a monometallic Au catalyst resulted in a significant decrease in catalytic activity. Furthermore, monometallic Pd was more active than Pd-rich bimetallic catalysts. The nature of the anti-synergy was probed by several ex situ techniques, which all indicated a growth in metal nanoparticle size with Pd addition. However, the most definitive information was provided by in situ CO-DRIFTS, in which CO adsorption associated with interfacial sites was found to vary with the molar ratio of the metals and could be correlated with the catalytic activity of each reaction. As a similar correlation was observed between activity and the presence of Au0* (as detected by XPS), it is proposed that peripheral Au0* species form part of the active centers in the most active catalysts for the three gas-phase reactions. In contrast, the active sites for the selective oxidation of benzyl alcohol are generally thought to be electronically modified gold atoms at the surface of the nanoparticles.
Collapse
Affiliation(s)
- James H. Carter
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Sultan Althahban
- Department of Materials Science and Engineering, Lehigh University, 5
East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Ewa Nowicka
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Simon J. Freakley
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - David J. Morgan
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Parag M. Shah
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Stanislaw Golunski
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Christopher J. Kiely
- Department of Materials Science and Engineering, Lehigh University, 5
East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Graham J. Hutchings
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
7
|
Saqlain MA, Hussain A, Siddiq DM, Leenaerts O, Leitão AA. DFT Study of Synergistic Catalysis of the Water-Gas-Shift Reaction on Cu-Au Bimetallic Surfaces. ChemCatChem 2016. [DOI: 10.1002/cctc.201501312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Adnan Saqlain
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
- Departamento de Química; Universidade Federal de Juiz de Fora; Juiz de Fora, MG, CEP 36036-330 Brazil
| | - Akhtar Hussain
- TPD, Pakistan Institute of Nuclear Science and Technology, PINSTECH, P. O. Nilore; Islamabad Pakistan
| | - Dr Muhammad Siddiq
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | | | - Alexandre A. Leitão
- Departamento de Química; Universidade Federal de Juiz de Fora; Juiz de Fora, MG, CEP 36036-330 Brazil
| |
Collapse
|