1
|
Implications of Solid Lipid Nanoparticles of Ganoderic Acid for the Treatment and Management of Hepatocellular Carcinoma. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Sun T, Gao J, Han D, Shi H, Liu X. Fabrication and characterization of solid lipid nano-formulation of astraxanthin against DMBA-induced breast cancer via Nrf-2-Keap1 and NF-kB and mTOR/Maf-1/PTEN pathway. Drug Deliv 2019; 26:975-988. [PMID: 31556759 PMCID: PMC6781204 DOI: 10.1080/10717544.2019.1667454] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
In the current experimental study, we scrutinized the chemoprotective effect of astraxanthin against the 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer via Nrf-2-Keap1 and NF-kB and mTOR/Maf-1/PTEN pathway. The double emulsion solvent displacement method was used for the preparation of astraxanthin solid lipid nanoparticles (SLN). SLNs were appraised for entrapment, potential, size, drug-release performance, and gastric stability. DMBA (8 mg/kg) was used for the induction of breast cancer. Tumor weight, body weight, and tumor incidence were estimated at a regular interval. Different biochemical parameters such as Na+/K+, Ca2+, and Mg2+ activity, antioxidant, lipid, glycoprotein, phase I and II biotransformation enzymes, mitochondrial TCA cycle, and carbohydrate metabolizing enzymes were estimated. Keap1-Nrf-2, associated HO-1, and NF-kB expressions were estimated. Moreover, it estimated the mRNA expression of LXR (α,β), HMG-CoAR, PTEN, Maf1, PI3K, mTOR, Akt, FASN, and ACC1. AX-SLN reduced the tumor incidence, tumor weight, and increased the body weight. AX-SLN exhibited the protective effect against the LPO, enzymic (SOD, CuZnSOD, MnSOD, GPx, and CAT), and nonenzymic (GSH) in the serum, mammary gland, renal, and hepatic tissues. AX-SLN reduced the p-AKT which is accountable for the reduction in the NF-kB expression and also reduced the expression of Keap1 and NF-kB along with increasing the expression of HO-1 and Nrf-2. Further, AX-SLN significantly altered the mRNA of LXR (α,β), HMG-CoAR, PTEN, Maf1, PI3K, mTOR, Akt, FASN, and ACC1. On the basis of the results, we can conclude that AX-SLN inhibits the mammary gland carcinogenesis via Nrf-2-Keap1, NF-kB, and mTOR/Maf-1/PTEN pathway.
Collapse
Affiliation(s)
- Tao Sun
- Department of Thyroid Breast Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jun Gao
- Department of Thyroid Breast Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Dan Han
- Eye, Plastic and Oral Wards, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Hongyan Shi
- Department of ENT (Ear–Nose–Throat), Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xianqiang Liu
- Department of Thyroid Breast Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
3
|
Kumar V, Sharma K, Ahmed B, Al-Abbasi FA, Anwar F, Verma A. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from Wedelia calendulacea: investigation via experimental validation and molecular docking. RSC Adv 2018; 8:18180-18196. [PMID: 35542112 PMCID: PMC9080591 DOI: 10.1039/c7ra12568b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/02/2018] [Indexed: 01/10/2023] Open
Abstract
Wedelia calendulacea has a long history of use in the Indian Ayurvedic System of Medicine for the treatment, prevention, and cure of a diverse range of human diseases such as diabetes obesity, and other metabolic diseases. A wide range of chemical constituents, such as triterpenoid saponin, kauren diterpene, and coumestans, has been isolated from the plant. Conversely, no published literature is available in relation to the isolation of wedelolactone (WEL) for its anti-diabetic effect. The aim of the present study was to isolate the bioactive phyto-constituent from Wedelia calendulacea and to scrutinize the antidiabetic effect with its possible mechanism of action. The structure of the isolated compound was elucidated by different spectroscopy techniques. Proteins, such as dipeptidyl peptidase-4 (DPPIV), glucose transporter 1 (GLUT1), and peroxisome proliferator-activated receptors-γ (PPARγ), were also subjected to in silico docking. Later, this isolated compound was scrutinized against α-glucosidase and α-amylase enzyme activity along with an oral glucose tolerance test (OGTT) for estimation of glucose utilization. Streptozotocin (STZ) was used for the induction of type II diabetes mellitus (DM) in Wistar rats. The rats were divided into different groups and received the WEL (5, 10, and 20 mg kg-1, b.w.) and glibenclamide (2.5 mg kg-1, b.w.) for 28 days. The blood glucose level (BGL), plasma insulin, and body weight were determined at regular time intervals. The serum lipid profile hypolipidemic effect for the different antioxidant markers and hepatic tissue markers were scrutinized along with an inflammatory mediator to deduce the possible mechanism. With the help of spectroscopy techniques, the isolated compound was identified as wedelolactone. In the docking study, WEL showed docking scores of -6.17, -9.43, and -7.66 against DPP4, GLUTI, and PRARY, respectively. WEL showed the inhibition of α-glucosidase (80.65%) and α-amylase (93.83%) and suggested an effect on postprandial hyperglycemia. In the OGTT, WEL significantly (P < 0.001) downregulated the BGL, a marker for better utilization of drugs. In the diabetes model, WEL reduced the BGL and enhanced the plasma insulin and body weight. It also significantly (P < 0.001) modulated the lipid profile; this suggested an anti-hyperlipidemia effect. WEL significantly (P < 0.001) distorted the hepatic tissue, acting as an antioxidant marker in a dose-dependent manner. WEL significantly (P < 0.001) downregulated the C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) level. On the basis of the available results, we can conclude that WEL can be an alternative drug for the treatment of type II DM either by inhibiting the production of inflammatory mediator or by the downregulation of oxidative stress.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences Allahabad Uttar Pradesh India - 211007
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard New Delhi-110062 India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard New Delhi-110062 India
| | - F A Al-Abbasi
- Department of Biochemistry, King Abdulaziz University Jeddah-21589 Kingdom of Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University Jeddah-21589 Kingdom of Saudi Arabia
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences Allahabad-211007 Uttar Pradesh India
| |
Collapse
|
4
|
Pandey P, Rahman M, Bhatt PC, Beg S, Paul B, Hafeez A, Al-Abbasi FA, Nadeem MS, Baothman O, Anwar F, Kumar V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond) 2018; 13:849-870. [DOI: 10.2217/nnm-2017-0306] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The present work describes the development of poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) of rutin (RT) for the treatment of hepatocellular carcinoma in rats. Materials & methods: RT-loaded PLGA NPs (RT-PLGA-NPs) were prepared by double emulsion evaporation method. Further these are optimized by Box–Behnken design. PLGA NPs were evaluated for size, polydispersity index, drug-loading capacity, entrapment, gastric stability, in vitro drug release, in vivo preclinical studies and biochemical studies. Results: Preclinical evaluation of RT-PLGA-NPs for anticancer activity through oral route exhibited significant improvement in hepatic, hematologic and renal biochemical parameters. Highly superior activity was observed in regulating oxidative stress and inflammatory markers, antioxidant enzymes, cytokines and inflammatory mediators and their role on plasma membrane ATPases responsible for destruction in liver tissues. Conclusion: Histopathological evaluation indicated reduced incidence of hepatic nodules, necrosis formation, infiltration of inflammatory cells, blood vessel inflammation and cell swelling with RT-PLGA-NP treatment along with considerable downregulation in the levels of proinflammatory cytokines.
Collapse
Affiliation(s)
- Preeti Pandey
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial & Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Sarwar Beg
- Product Development Research, Jubilant Generics Limited, Noida-201301, UP, India
| | - Basudev Paul
- Product Development Research, Jubilant Generics Limited, Noida-201301, UP, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, UP, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| |
Collapse
|
5
|
Kumar V, Bhatt PC, Rahman M, Al-Abbasi FA, Anwar F, Verma A. Umbelliferon-α-d-glucopyranosyl-(2 I→1 II)-α-Dglucopyranoside ameliorates Diethylnitrosamine induced precancerous lesion development in liver via regulation of inflammation, hyperproliferation and antioxidant at pre-clinical stage. Biomed Pharmacother 2017; 94:834-842. [PMID: 28802237 DOI: 10.1016/j.biopha.2017.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
It is well documented that anomalous production of inflammatory proteins linked with most of the toxic expression and genesis of diverse chronic disease including cancer. Diethylnitrosamine (DEN) a well-known hepatotoxin and hepatocarcinogen, can induce oxidative stress and inflammatory reaction in it. Umbelliferone, secondary metabolites, is present in different plants and widely consumed by humans as medicine and food supplements. The aim of the current study was to scrutinize the chemoprotective potential of umbelliferon-α-d-glucopyranosyl-(2I→1II)-α-d-glucopyranoside (UFD) against DEN-induced hepatocellular carcinoma (HCC) in experimental rats. Single intraperitoneal injection of DEN (200mg/kg) was used for induction of HCC in rats and rats were grouped and orally treated with UFD (5, 10 and 20mg/kg) dose for 22 weeks. Parameters under investigation included hepatic, non-hepatic enzymes, oxidative stress, pro-inflammatory cytokines, COX-2 and NF-κB level along with histopathological examination in HCC rats. UFD exerted protective effect via reduction of oxidative stress, liver and non-liver parameters in a dose-dependent manner. It also reduced the expression of TNF-α, IL-1β, IL-6 and COX-2 in diseased rats. Our result revealed the essential repression of the inflammation cascade through modulation of nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India.
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amita Verma
- Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| |
Collapse
|
6
|
Verma A, Singh D, Anwar F, Bhatt PC, Al-Abbasi F, Kumar V. Triterpenoids principle of Wedelia calendulacea attenuated diethynitrosamine-induced hepatocellular carcinoma via down-regulating oxidative stress, inflammation and pathology via NF-kB pathway. Inflammopharmacology 2017; 26:133-146. [DOI: 10.1007/s10787-017-0350-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/15/2017] [Indexed: 02/07/2023]
|
7
|
Verma A, Bhatt PC, kaithwas G, Sethi N, Rashid M, Singh Y, Rahman M, Al-Abbasi F, Anwar F, Kumar V. Chemomodulatory effect Melastoma Malabathricum Linn against chemically induced renal carcinogenesis rats via attenuation of inflammation, oxidative stress, and early markers of tumor expansion. Inflammopharmacology 2016; 24:233-251. [DOI: 10.1007/s10787-016-0276-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 01/11/2023]
|