Lei H, Tu J, Yu Z, Jiao S. Exfoliation Mechanism of Graphite Cathode in Ionic Liquids.
ACS APPLIED MATERIALS & INTERFACES 2017;
9:36702-36707. [PMID:
28972779 DOI:
10.1021/acsami.7b03306]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Graphene has been successfully electrochemically exfoliated by electrolysis of cathode graphite in the aluminum-ion battery with ionic liquid electrolyte comprising AlCl3 and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl). The AlCl4-, Al2Cl7-, etc., intercalation into graphite flakes in ionic liquid of the aluminum-ion battery by different electrolysis processes to exfoliate graphite has been researched in detail. As a result of the enhanced structural flexibility, the intercalant gallery height increases in the less than five-layer graphene film, providing more free space for AlCl4-, Al2Cl7-, etc. transport. Therefore, a quantity of 3-5 layers rather than 1-2 layers of graphene can be obtained. The results clearly demonstrate that graphene has been produced in the graphite cathode in AlCl3/EMImCl ionic liquids, which is significantly meaningful for accelerating the theoretical research and industrialized application of graphene. Meanwhile, it has a vitally important role for promoting the recycling Al-ion batteries.
Collapse