1
|
Deshmukh SS, Maibam A, Krishnamurty S, Krishnamoorthy K, Nithyanandhan J. Visible-Light-Active Unsymmetrical Squaraine Dyes with Pyridyl Anchoring Groups for Dye-Sensitized Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:251-263. [PMID: 38115198 DOI: 10.1021/acs.langmuir.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Visible-light-active alkyl group-wrapped unsymmetrical squaraine dyes SD1-SD3 were synthesized, featuring an indoline donor and pyridine and carboxylic acid anchoring groups. Their photophysical, electrochemical, and photovoltaic characteristics were examined by fabricating a dye-sensitized solar cell (DSSC) device. Both carboxylic acid and pyridine anchoring groups containing squaraine dyes SD3 and SD2 possess similar photophysical and electrochemical characteristics. However, their photovoltaic performances were completely different. The SD3 dye with the carboxylic acid anchoring group displayed a DSSC device efficiency of 7.20% (VOC 0.81 V; JSC 12.29 mA/cm2) using iodolyte (I-/I3-) electrolyte, compared to SD1 (VOC 0.659 V; JSC 4.97 mA/cm2; and η - 2.34%) and SD2 (VOC 0.629 V; JSC 1.68 mA/cm2; and η - 0.84%), which were featured with pyridyl anchoring groups. These results were attributed to dye loading on the Lewis and Brønsted acidic sites of TiO2 and the importance of aggregated structures for photocurrent generation. In the incident photon-to-current efficiency (IPCE) analysis, SD1 dye-sensitized devices exhibited photocurrent generation from both monomeric and aggregated dyes on the TiO2 surface. In contrast, SD2 showed photocurrent generation solely from aggregated states. Despite the introduction of long alkyl chains to reduce dye aggregation and charge recombination, the results indicated preferential charge injection from only the aggregated SD2 dye on TiO2. Fluorescence-quenching experiments indicated an efficient charge transfer from the aggregated SD2 dye to TiO2 compared to that of the monomeric dye. Cosensitization, a method to enhance the light-harvesting efficiency and photocurrent generation in DSSCs, was explored by simultaneously cosensitizing pyridyl-based dyes (SD1 and SD2) with a blue-colored carboxylic acid-based squaraine dye SD4. IPCE analysis demonstrated that both SD1 and SD4 contributed to generating a photocurrent of 9.11 mA/cm2. The sequential cosensitization of SD1 and SD4 with the coadsorbent CDCA showed the highest performance, with a VOC of 0.663 V, a JSC of 11.43 mA/cm2, and an efficiency (η) of 5.20%.
Collapse
Affiliation(s)
- Shivdeep Suresh Deshmukh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayaraj Nithyanandhan
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Ooyama Y, Furue K, Enoki T, Kanda M, Adachi Y, Ohshita J. Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell. Phys Chem Chem Phys 2018; 18:30662-30676. [PMID: 27790658 DOI: 10.1039/c6cp06513a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A type-I/type-II hybrid dye sensitizer with a pyridyl group and a catechol unit as the anchoring group has been developed and its photovoltaic performance in dye-sensitized solar cells (DSSCs) is investigated. The sensitizer has the ability to adsorb on a TiO2 electrode through both the coordination bond at Lewis acid sites and the bidentate binuclear bridging linkage at Brønsted acid sites on the TiO2 surface, which makes it possible to inject an electron into the conduction band of the TiO2 electrode by the intramolecular charge-transfer (ICT) excitation (type-I pathway) and by the photoexcitation of the dye-to-TiO2 charge transfer (DTCT) band (type-II pathway). It was found that the type-I/type-II hybrid dye sensitizer adsorbed on TiO2 film exhibits a broad photoabsorption band originating from ICT and DTCT characteristics. Here we reveal the photophysical and electrochemical properties of the type-I/type-II hybrid dye sensitizer bearing a pyridyl group and a catechol unit, along with its adsorption modes onto TiO2 film, and its photovoltaic performance in type-I/type-II DSSC, based on optical (photoabsorption and fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), density functional theory (DFT) calculation, FT-IR spectroscopy of the dyes adsorbed on TiO2 film, photocurrent-voltage (I-V) curves, incident photon-to-current conversion efficiency (IPCE) spectra, and electrochemical impedance spectroscopy (EIS) for DSSC.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Kensuke Furue
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Toshiaki Enoki
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Masahiro Kanda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Yohei Adachi
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Joji Ohshita
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
3
|
Ooyama Y, Kanda M, EnoKi T, Adachi Y, Ohshita J. Synthesis, optical and electrochemical properties, and photovoltaic performance of a panchromatic and near-infrared (D)2–π–A type BODIPY dye with pyridyl group or cyanoacrylic acid. RSC Adv 2017. [DOI: 10.1039/c7ra00799j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(D)2–π–A type BODIPY dyes bearing a pyridyl group or cyanoacrylic acid group and two diphenylamine–thienylcarbazole moieties which possess near-infrared adsorption ability as well as panchromatic adsorption ability, have been developed.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Masahiro Kanda
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Toshiaki EnoKi
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Yohei Adachi
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Joji Ohshita
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
4
|
Ooyama Y, Yamaguchi N, Ohshita J, Harima Y. Impact of the molecular structure and adsorption mode of D-π-A dye sensitizers with a pyridyl group in dye-sensitized solar cells on the adsorption equilibrium constant for dye-adsorption on TiO 2 surface. Phys Chem Chem Phys 2016; 18:32992-32998. [PMID: 27886308 DOI: 10.1039/c6cp07386g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
D-π-A dyes NI-4 bearing a pyridyl group, YNI-1 bearing two pyridyl groups and YNI-2 bearing two thienylpyridyl groups as the anchoring group on the TiO2 surface have been developed as dye sensitizers for dye-sensitized solar cells (DSSCs), where NI-4 and YNI-2 can adsorb onto the TiO2 electrode through the formation of the coordinate bond between the pyridyl group of the dye and the Lewis acid site (exposed Tin+ cations) on the TiO2 surface, but YNI-1 is predominantly adsorbed on the TiO2 electrode through the formation of the hydrogen bond between the pyridyl group of the dye and the Brønsted acid sites (surface-bound hydroxyl groups, Ti-OH) on the TiO2 surface. The difference in the dye-adsorption mode among the three dyes on the TiO2 surface has been investigated from the adsorption equilibrium constant (Kad) based on the Langmuir adsorption isotherms. It was found that the Kad values of YNI-1 and YNI-2 are higher than that of NI-4, and more interestingly, the Kad value of YNI-2 is higher than that of YNI-1. This work demonstrates that that for the D-π-A dye sensitizers with the pyridyl group as the anchoring group to the TiO2 surface the number of pyridyl groups and the dye-adsorption mode on the TiO2 electrode as well as the molecular structure of the dye sensitizer affect the Kad value for the adsorption of the dye to the TiO2 electrode, that is, resulting in a difference in the Kad value among the D-π-A dye sensitizers NI-4, YNI-1 and YNI-2.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Naoya Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Joji Ohshita
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Yutaka Harima
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
5
|
Meinhardt U, Lodermeyer F, Schaub TA, Kunzmann A, Dral PO, Sale AC, Hampel F, Guldi DM, Costa RD, Kivala M. N-Heterotriangulene chromophores with 4-pyridyl anchors for dye-sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra14799b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of N-heterotriangulenes decorated with 4-pyridyl anchors were synthesized and their performance in n-type TiO2- and ZnO-based dye-sensitized solar cells investigated.
Collapse
Affiliation(s)
- Ute Meinhardt
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Fabian Lodermeyer
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Tobias A. Schaub
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Andreas Kunzmann
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Pavlo O. Dral
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
| | - Anna Chiara Sale
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Frank Hampel
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Ruben D. Costa
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Milan Kivala
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| |
Collapse
|
6
|
Ooyama Y, Ohshita J. Development of D-π-A Dye Sensitizers with Azine Ring and Their Photovoltaic Performances of Dye-Sensitized Solar Cells. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University
| | | |
Collapse
|