1
|
Hu S, Xiao F, Du M, Pan J, Song L, Wu C, Zhu B, Xu X. The freeze-thaw stability of flavor high internal phase emulsion and its application to flavor preservation and 3D printing. Food Chem X 2023; 19:100759. [PMID: 37780284 PMCID: PMC10534104 DOI: 10.1016/j.fochx.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 10/03/2023] Open
Abstract
Volatilization of flavor substances may reduce consumers' perception of flavor, and the research on preservation of flavor substances by high internal phase emulsions (HIPEs) under freeze-thaw conditions is still blank. Herein, flavor HIPEs prepared by adding more than 15% litsea cubeba oil in the oil phase could be used as food-grade 3D printing inks, and showed better stability after 5 freeze-thaw cycles, which could be interpreted as the reduced ice crystal formation, more stable interface layer, and more flexible gel-like network structure resulting from the protein binding to flavor substances. The constructed HIPEs system in this study could preserve the encapsulated flavor substances perfectly after 5 freeze-thaw cycles. Overall, this study contributes a food-grade 3D printing ink, and provides a new method for the preservation of flavor substances under freezing conditions and expands the application range of flavor HIPEs in food industry.
Collapse
Affiliation(s)
- Sijie Hu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Feng Xiao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jinfeng Pan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
2
|
Zhou B, Drusch S, Hogan SA. Confined flow behavior under high shear rates and stability of oil/water high internal phase emulsions (HIPEs) stabilized by whey protein isolate: Role of protein concentration and pH. Food Res Int 2022; 160:111674. [DOI: 10.1016/j.foodres.2022.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
3
|
Alavi F, Ciftci ON. Developing dual nano/macroporous starch bioaerogels via emulsion templating and supercritical carbon dioxide drying. Carbohydr Polym 2022; 292:119607. [PMID: 35725150 DOI: 10.1016/j.carbpol.2022.119607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
Abstract
In this study, emulsified oil droplets were employed as a temporary porogen to obtain dual nano/macroporous starch aerogels by supercritical carbon dioxide (SC-CO2) drying. This method took advantage of the solubility of the oil droplet porogens in acetone, and the insolubility of corn starch in this solvent, so this process could be integrated into the typical aerogel processing method. The effect of porogen content and starch concentration on physical and mechanical properties and the internal morphology of the obtained aerogels were studied. While the neat starch aerogel showed a compact structure in macroscale size with interconnected nanopores, the sacrificing oil droplet porogens induced macropores in the emulsion-templated aerogels. Furthermore, the nanoporous structures of starch aerogels were also well-preserved in which the macropores were surrounded by fine and interconnected nanofibrous networks. It resulted in aerogels that exhibited internal morphology in two scales (macropores and nanopores) with a high surface area (156-190 m2/g).
Collapse
Affiliation(s)
- Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA.
| |
Collapse
|
4
|
The formation, structural and rheological properties of emulsion gels stabilized by egg white protein-insoluble soybean fiber complex. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zhang X, Chen D, Zhao Z, Wan J, Prakash S. Rheological and textural properties of emulsion-filled gel based on enzymatically hydrolyzed rice starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Bi AQ, Xu XB, Guo Y, Du M, Yu CP, Wu C. Fabrication of flavour oil high internal phase emulsions by casein/pectin hybrid particles: 3D printing performance. Food Chem 2022; 371:131349. [PMID: 34808768 DOI: 10.1016/j.foodchem.2021.131349] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023]
Abstract
In this study, three-dimensional (3D) printable oil/water (O/W) high-internal-phase emulsions (HIPEs) (internal phase fraction = 75%) were fabricated using casein (3% w/v)/pectin (1-5% w/v) hybrid particles with flavour oil. The morphologies of the HIPEs, revealed by confocal laser scanning microscopy (CLSM) and cryo-scanning electron microscopy (cryo-SEM), indicated that the casein/pectin hybrid particles were mainly distributed on the interface of oil droplets. Additionally, the results of rheological and gel-strength measurements indicated that the viscosity (ranging from 1316.51-0.21 to 4301.84-0.79 Pa.s) of HIPEs increased with increasing pectin content (from 0% to 4% w/v), and the gel strength of printed HIPEs increased (from 10.37 to 21.19 g) with increasing pectin (from 1% to 5% w/v). The developed HIPEs were applied for 3D printing and the thus-printed objects could adequately maintain the designed shape and structure. The developed 3D printable HIPEs have excellent potential applications in the food, medical, and cosmetic industries.
Collapse
Affiliation(s)
- An-Qi Bi
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xian-Bing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yu Guo
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; College of Food Science and Engineering, Shanxi Agricultural University, Shanxi 030801, PR China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Cui-Ping Yu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
7
|
Khalesi M, FitzGerald RJ. Investigation of the flowability, thermal stability and emulsification properties of two milk protein concentrates having different levels of native whey proteins. Food Res Int 2021; 147:110576. [PMID: 34399548 DOI: 10.1016/j.foodres.2021.110576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Milk protein concentrate-85 (MPC85) is a dairy ingredient which has a diverse range of applications in food products. The technofunctional properties of two MPC85 samples having similar gross composition but different levels of native whey protein (WP), i.e., MPC85S1 and MPC85S2 with 16.6 and 6.0 g native WP/100 g protein, respectively, were compared. Rheometeric analysis showed that under an applied normal stress of 1.0-15.0 kPa, the compressibility, the air permeability and the cohesiveness of MPC85S2 was higher compared to MPC85S1. Differential scanning calorimetry showed that protein denaturation in MPC85S1 began at 63 °C while for MPC85S2 it began at 70 °C. The heat coagulation time (HCT at 140 °C) for 4.2% (w/v, on a protein basis) reconstituted MPC85S1 and MPC85S2 was 2.2 and 2.7 min, respectively. While a higher lightness for MPC85S1 was evidenced using colourimeter analysis, the colour stability on oven drying at 95 °C for MPC85S2 was higher than MPC85S1. The emulsion produced with MPC85S1 flocculated after 1 d and phase separation occurred after 14 d. In the case of MPC85S2, flocculation began after 4 d while phase separation was observed at 33 d. The viscosity of MPC85S2 (4.2% (w/v) protein) was higher than MPC85S1. This study showed differences between the flowability, viscosity, colour properties, thermal stability (in powder and in reconstituted format), emulsification and buffering capacity for MPC samples having two different levels of WP denaturation. The results demonstrated that the MPCs studied having two different levels of WP denaturation could be targeted for different functional applications. The minimal/maximum level of denaturation required to induce technofunctional property differences requires further study.
Collapse
|
8
|
Foster NC, Allen P, El Haj AJ, Grover LM, Moakes RJA. Tailoring Therapeutic Responses via Engineering Microenvironments with a Novel Synthetic Fluid Gel. Adv Healthc Mater 2021; 10:e2100622. [PMID: 34160135 PMCID: PMC11468753 DOI: 10.1002/adhm.202100622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Indexed: 12/28/2022]
Abstract
This study reports the first fully synthetic fluid gel (SyMGels) using a simple poly(ethylene glycol) polymer. Fluid gels are an interesting class of materials: structured during gelation via shear-confinement to form microparticulate suspensions, through a bottom-up approach. Structuring in this way, when compared to first forming a gel and subsequently breaking it down, results in the formation of a particulate dispersion with particles "grown" in the shear flow. Resultantly, systems form a complex microstructure, where gelled particles concentrate remaining non-gelled polymer within the continuous phase, creating an amorphous-like interstitial phase. As such, these materials demonstrate mechanical characteristics typical of colloidal glasses, presenting solid-like behaviors at rest with defined yielding; likely through intrinsic particle-particle and particle-polymer interactions. To date, fluid gels have been fabricated using polysaccharides with relatively complex chemistries, making further modifications challenging. SyMGels are easily functionalised, using simple click-chemistry. This chemical flexibility, allows the creation of microenvironments with discrete biological decoration. Cellular control is demonstrated using MSC (mesenchymal stem cells)/chondrocytes and enables the regulation of key biomarkers such as aggrecan and SOX9. These potential therapeutic platforms demonstrate an important advancement in the biomaterial field, underpinning the mechanisms which drive their mechanical properties, and providing a versatile delivery system for advanced therapeutics.
Collapse
Affiliation(s)
- Nicola C. Foster
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Piers Allen
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Alicia J. El Haj
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Liam M. Grover
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | | |
Collapse
|
9
|
In-situ dispersion of casein to form nanoparticles for Pickering high internal phase emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Alavi F, Chen L, Emam-Djomeh Z. Structuring of acidic oil-in-water emulsions by controlled aggregation of nanofibrillated egg white protein in the aqueous phase using sodium hexametaphosphate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Young P, Mills T, Norton I. Influence of pH on fluid gels produced from egg and whey protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Acid-induced gelation of thermal co-aggregates from egg white and hempseed protein: Impact of microbial transglutaminase on mechanical and microstructural properties of gels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Alavi F, Tian Z, Chen L, Emam-Djomeh Z. Effect of CaCl2 on the stability and rheological properties of foams and high-sugar aerated systems produced by preheated egg white protein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105887] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Bi AQ, Xu XB, Guo Y, Du M, Yu CP, Wu C. Ultrasound pre-fractured casein and in-situ formation of high internal phase emulsions. ULTRASONICS SONOCHEMISTRY 2020; 64:104916. [PMID: 31874728 DOI: 10.1016/j.ultsonch.2019.104916] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Traditional preparation of protein particles is usually complex and tedious, which is a major issue in the development of Pickering high internal phase emulsions (HIPEs). In this study, a facile and in-situ method for the preparation of food-grade Pickering HIPEs was developed using ultrasound pre-fractured casein flocs. The ultrasonic-treated casein protein and resulting Pickering HIPEs were characterised using particle size distribution, confocal laser scanning microscopy (CLSM), cryo-SEM, and rheological measurement. The results indicated that pH values of casein and ultrasonic power level were key parameters for casein protein dispersion into nanoparticles to form o/w Pickering HIPEs. In optimal conditions, the hexagons of emulsion droplets were close together, and the emulsions formed with ultrasonic caseins exhibited gel-like behaviour. Additionally, ultrasonic microscale-sized caseins (about 25 μm) disappeared upon the use of high speed homogenisation during the formation of HIPEs, while the chemical distribution revealed by confocal laser scanning microscopy indicated that the dispersive nanoparticles from casein proteins were evidently absorbed on the interface of HIPEs (cryo-SEM). These findings prove that ultrasound is an effective tool to loosen casein flocs to induce the in-situ formation of stabilised Pickering HIPEs. Overall, this work provides a green and facile route to convert edible oil into a soft solid, which has great potential for applications in biomedical materials, 3D printing technology, and various cosmetics.
Collapse
Affiliation(s)
- An-Qi Bi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Xian-Bing Xu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, PR China.
| | - Yu Guo
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, PR China; College of Food Science and Engineering, Shanxi Agricultural University, Shanxi 030801, PR China
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Cui-Ping Yu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, PR China
| |
Collapse
|
15
|
Rashed MMA, Mahdi AA, Ghaleb ADS, Zhang FR, YongHua D, Qin W, WanHai Z. Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int J Biol Macromol 2020; 151:702-712. [PMID: 32092424 DOI: 10.1016/j.ijbiomac.2020.02.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022]
Abstract
This investigation aims to evaluate the synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier (RBD-SFO), and high-energy microfluidization in synergy with the ultrasonic techniques in fabricating of Lavandula angustifolia essential oil (LAF-EO) nanoparticle. GC-MS and SEM techniques were employed to investigate the LAF-EO isolation method used. DLS analysis was employed along with CLSM and TEM techniques to investigate the physicochemical properties of nanoemulsion formulation (NE) matrices. The NE achieved the optimal spherical and size distributions of droplets (125.7 nm), Poly Dispersity Index (PdI) (0.183), and ζ-potential (-40.3 mV) when the contents of the formulation matrix were as follows: OSA-MS (2%), LAF-EO (1%), RBD-SFO (1%), and Tween-80 (1%). The findings of this work provide a new concept about the synergistic effects of amorphous OSA-modified starch and unsaturated lipid carrier as safe-grade macromolecules in the fabricating of LAF-EO nanoparticles. Besides, the application of the ultrasound cavitation phenomenon has been shown to have effective effect in reducing the droplet hydrodynamic diameter along with enhancing the distribution (PdI) and electrokinetic potential of the LAF-EO nanoparticles.
Collapse
Affiliation(s)
- Marwan M A Rashed
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China.
| | - Amer Ali Mahdi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China
| | - Abduljalil D S Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana'a, Yemen
| | - Feng Rui Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Du YongHua
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Wei Qin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| | - Zhou WanHai
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| |
Collapse
|
16
|
Yan C, Fu D, McClements DJ, Xu P, Zou L, Zhu Y, Cheng C, Liu W. Rheological and microstructural properties of cold-set emulsion gels fabricated from mixed proteins: Whey protein and lactoferrin. Food Res Int 2019; 119:315-324. [DOI: 10.1016/j.foodres.2019.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 02/02/2023]
|
17
|
Mohamed AIA, Hussein IA, Sultan AS, Al-Muntasheri GA. Gelation of Emulsified Polyacrylamide/Polyethylenimine under High-Temperature, High-Salinity Conditions: Rheological Investigation. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ibnelwaleed A. Hussein
- Gas Processing Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | | |
Collapse
|
18
|
Lazidis A, de Almeida Parizotto L, Spyropoulos F, Norton I. Reprint of: Microstructural design of aerated food systems by soft-solid materials. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
pH-, ion- and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Cooke ME, Jones SW, Ter Horst B, Moiemen N, Snow M, Chouhan G, Hill LJ, Esmaeli M, Moakes RJA, Holton J, Nandra R, Williams RL, Smith AM, Grover LM. Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705013. [PMID: 29430770 DOI: 10.1002/adma.201705013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/20/2017] [Indexed: 06/08/2023]
Abstract
The development of new materials for clinical use is limited by an onerous regulatory framework, which means that taking a completely new material into the clinic can make translation economically unfeasible. One way to get around this issue is to structure materials that are already approved by the regulator, such that they exhibit very distinct physical properties and can be used in a broader range of clinical applications. Here, the focus is on the structuring of soft materials at multiple length scales by modifying processing conditions. By applying shear to newly forming materials, it is possible to trigger molecular reorganization of polymer chains, such that they aggregate to form particles and ribbon-like structures. These structures then weakly interact at zero shear forming a solid-like material. The resulting self-healing network is of particular use for a range of different biomedical applications. How these materials are used to allow the delivery of therapeutic entities (cells and proteins) and as a support for additive layer manufacturing of larger-scale tissue constructs is discussed. This technology enables the development of a range of novel materials and structures for tissue augmentation and regeneration.
Collapse
Affiliation(s)
- Megan E Cooke
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Inflammation and Ageing, MRC Musculoskeletal Ageing Centre, QE Hospital, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Musculoskeletal Ageing Centre, QE Hospital, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Britt Ter Horst
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Burns Research, QE Hospital, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Naiem Moiemen
- Scar Free Foundation Centre for Burns Research, QE Hospital, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martyn Snow
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurpreet Chouhan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lisa J Hill
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maryam Esmaeli
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Richard J A Moakes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James Holton
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rajpal Nandra
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Richard L Williams
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alan M Smith
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
21
|
Mao L, Miao S, Yuan F, Gao Y. Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Res Int 2018; 103:1-7. [DOI: 10.1016/j.foodres.2017.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
22
|
Lazidis A, de Almeida Parizotto L, Spyropoulos F, Norton I. Microstructural design of aerated food systems by soft-solid materials. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Abstract
This review article gives an overview of structural features of composite foods, and its relation to rheological, lubrication and sensory properties.
Collapse
Affiliation(s)
- Elke Scholten
- Physics and Physical Chemistry of Foods
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| |
Collapse
|
24
|
Stability of tuna oil and tuna oil/peppermint oil blend microencapsulated using whey protein isolate in combination with carboxymethyl cellulose or pullulan. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.04.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Torres O, Murray B, Sarkar A. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|