1
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Enhanced CO2 capture kinetics by using macroporous carbonized natural fibers impregnated with an ionic liquid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Sheng Z, Ding Y, Li G, Fu C, Hou Y, Lyu J, Zhang K, Zhang X. Solid-Liquid Host-Guest Composites: The Marriage of Porous Solids and Functional Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104851. [PMID: 34623698 DOI: 10.1002/adma.202104851] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Composite materials can provide remarkable improvements over the individual constituents. Especially, with a liquid component introduced into a solid porous host, solid-liquid host-guest composites have recently come to the forefront with exceptional functions that promise them for a wealth of applications. Combining the unprecedented dynamic, transparent, omniphobic, self-healing, diffusive and adaptive nature of functional liquid with inherent solid host's property, solid-liquid host-guest composites can realize the ease of fabrication, long-term stability, and a broad spectrum of enhanced properties, which cannot be fully met by conventional solid-solid composites or liquid-liquid composites. This review presents the state-of-the-art progress in solid-liquid host-guest composites. Initially, the concept, classification, design strategy, as well as fabrication methods as a path forward to develop the composites are unraveled, and further it is elaborated on how the functionality of porous solid and functional liquid can be harnessed to create composites with a broad range of unique properties, especially, the optical, thermal, electric, mechanical, sorption, and separation properties. With these fascinating properties, a myriad of emerging applications such as optical devices, thermal management, electromagnetic-interference shielding, soft electronics, gas capture and release, and multiphase separations are touched upon, inspiring more frontier researches in materials science, interfacial chemistry, membrane science, engineering, and multidisciplinary. Finally, this review provides the perspective on the future directions of solid-liquid host-guest composites and assesses the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Zhizhi Sheng
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yi Ding
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangyong Li
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chen Fu
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yinglai Hou
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jing Lyu
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kun Zhang
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
4
|
Zheng S, Zeng S, Li Y, Bai L, Bai Y, Zhang X, Liang X, Zhang S. State of the art of ionic liquid‐modified adsorbents for
CO
2
capture and separation. AIChE J 2021. [DOI: 10.1002/aic.17500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuang Zheng
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- Sino‐Danish College University of Chinese Academy of Sciences Beijing China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Yue Li
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- College of Chemical Engineering and Environment China University of Petroleum Beijing China
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Yinge Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- Sino‐Danish College University of Chinese Academy of Sciences Beijing China
| | - Xiaodong Liang
- Department of Chemical and Biochemical Engineering Technical University of Denmark Lyngby Denmark
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
Singh G, Lee J, Karakoti A, Bahadur R, Yi J, Zhao D, AlBahily K, Vinu A. Emerging trends in porous materials for CO2 capture and conversion. Chem Soc Rev 2020; 49:4360-4404. [DOI: 10.1039/d0cs00075b] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review highlights the recent progress in porous materials (MOFs, zeolites, POPs, nanoporous carbons, and mesoporous materials) for CO2 capture and conversion.
Collapse
Affiliation(s)
- Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Jangmee Lee
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Dongyuan Zhao
- Department of Chemistry
- Laboratory of Advanced Nanomaterials
- iChEM (Collaborative Innovation Center of Chemistry for Energy materials)
- Fudan University
- Shanghai 200433
| | - Khalid AlBahily
- SABIC Corporate Research and Development Centre at KAUST
- Saudi Basic Industries Corporation
- Thuwal
- Saudi Arabia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
6
|
Panploo K, Chalermsinsuwan B, Poompradub S. Natural rubber latex foam with particulate fillers for carbon dioxide adsorption and regeneration. RSC Adv 2019; 9:28916-28923. [PMID: 35528441 PMCID: PMC9071813 DOI: 10.1039/c9ra06000f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 11/21/2022] Open
Abstract
To reduce the carbon dioxide (CO2) concentration in the atmosphere, natural rubber (NR) was developed as a rubber foam for CO2 adsorption. Although the CO2 adsorption capacity of the NR latex foam produced by mixing with a cake mixer (CM) was higher than that produced with an overhead stirrer (OS), both capacity values were still low. To improve the CO2 adsorption capacity, the use of unmodified and (3-aminopropyl)triethoxysilane-modified silica particles as fillers in the CM rubber foam matrix was examined. The highest CO2 adsorption capacity, from a mixed gas flow rate of 100 mL min-1 at ambient temperature and pressure, was obtained with the CM foam filled with 5 parts by weight per hundred parts of rubber filled with modified silica particles (4.08 mg g-1). The CO2 adsorption capacity of this foam was approximately 1.11- and 2.87-fold higher than that of the CM foam filled with unmodified silica particles (3.69 mg g-1) and unfilled CM rubber (1.42 mg g-1), respectively. Morphological analysis supported that the cell size and number of pores per cell of the NR latex foam, which were higher in the CM foams than the OS foams, were important factors for evaluating CO2 adsorption. In addition to physisorption between CM and CO2, chemisorption between the modified silica particles and CO2 increased the CO2 adsorption capacity.
Collapse
Affiliation(s)
- Krittaya Panploo
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Benjapon Chalermsinsuwan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University Bangkok 10330 Thailand
| | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University Bangkok 10330 Thailand
- Green Materials for Industrial Application Research Unit, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
7
|
Madani SH, Arellano IH, Mata JP, Pendleton P. Particle and cluster analyses of silica powders via small angle neutron scattering. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Affiliation(s)
- Shiguo Zhang
- College
of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Center for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis & Selective Oxidation, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000 Lanzhou, China
| | - Jiaheng Zhang
- School
of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yan Zhang
- College
of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Youquan Deng
- Center for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis & Selective Oxidation, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000 Lanzhou, China
| |
Collapse
|
9
|
Moya C, Alonso-Morales N, Gilarranz MA, Rodriguez JJ, Palomar J. Encapsulated Ionic Liquids for CO 2 Capture: Using 1-Butyl-methylimidazolium Acetate for Quick and Reversible CO 2 Chemical Absorption. Chemphyschem 2016; 17:3891-3899. [PMID: 27644041 DOI: 10.1002/cphc.201600977] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 11/10/2022]
Abstract
The potential advantages of applying encapsulated ionic liquid (ENIL) to CO2 capture by chemical absorption with 1-butyl-3-methylimidazolium acetate [bmim][acetate] are evaluated. The [bmim][acetate]-ENIL is a particle material with solid appearance and 70 % w/w in ionic liquid (IL). The performance of this material as CO2 sorbent was evaluated by gravimetric and fixed-bed sorption experiments at different temperatures and CO2 partial pressures. ENIL maintains the favourable thermodynamic properties of the neat IL regarding CO2 absorption. Remarkably, a drastic increase of CO2 sorption rates was achieved using ENIL, related to much higher contact area after discretization. In addition, experiments demonstrate reversibility of the chemical reaction and the efficient ENIL regeneration, mainly hindered by the unfavourable transport properties. The common drawback of ILs as CO2 chemical absorbents (low absorption rate and difficulties in solvent regeneration) are overcome by using ENIL systems.
Collapse
Affiliation(s)
- Cristian Moya
- Sección de Ingeniería Química (Dep. de Química Física Aplicada), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Noelia Alonso-Morales
- Sección de Ingeniería Química (Dep. de Química Física Aplicada), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Miguel A Gilarranz
- Sección de Ingeniería Química (Dep. de Química Física Aplicada), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Juan J Rodriguez
- Sección de Ingeniería Química (Dep. de Química Física Aplicada), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Jose Palomar
- Sección de Ingeniería Química (Dep. de Química Física Aplicada), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
10
|
Lemus J, Bedia J, Moya C, Alonso-Morales N, Gilarranz MA, Palomar J, Rodriguez JJ. Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs). RSC Adv 2016. [DOI: 10.1039/c6ra11685j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Encapsulated ionic liquids (ENILs) based on carbonaceous submicrocapsules were designed, synthesized and applied to the sorption of NH3 from gas streams.
Collapse
Affiliation(s)
- Jesus Lemus
- Sección de Ingeniería Química (Departamento de Química Física Aplicada)
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Jorge Bedia
- Sección de Ingeniería Química (Departamento de Química Física Aplicada)
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Cristian Moya
- Sección de Ingeniería Química (Departamento de Química Física Aplicada)
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Noelia Alonso-Morales
- Sección de Ingeniería Química (Departamento de Química Física Aplicada)
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Miguel A. Gilarranz
- Sección de Ingeniería Química (Departamento de Química Física Aplicada)
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Jose Palomar
- Sección de Ingeniería Química (Departamento de Química Física Aplicada)
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Juan J. Rodriguez
- Sección de Ingeniería Química (Departamento de Química Física Aplicada)
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
11
|
Xie W, Ji X, Feng X, Lu X. Mass Transfer Rate Enhancement for CO2 Separation by Ionic Liquids: Effect of Film Thickness. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenlong Xie
- Department
of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented
Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Xiaoyan Ji
- Division
of Energy Science/Energy Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xin Feng
- Department
of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented
Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Xiaohua Lu
- Department
of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented
Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| |
Collapse
|