1
|
Xi X, Zhang Z, Qi Y. Preparation and Properties of PED-TDI Polyurethane-Modified Silicone Coatings. Polymers (Basel) 2022; 14:polym14153212. [PMID: 35956726 PMCID: PMC9370997 DOI: 10.3390/polym14153212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
To explore the influence mechanisms of polyurethane soft segments on modified silicone coatings, a series of modified coatings was prepared by introducing different contents of hydroxypropyl-terminated polydimethylsiloxane (PDMS2200) into the soft segment of polyurethane. ATR-FTIR, NMR, CLSM, AFM, contact angle measurement, the tensile test, bacterial adhesion, and the benthic diatom adhesion test were used to investigate the structure, morphology, roughness, degree of microphase separation, surface energy, tensile properties, and antifouling properties of the modified coatings. The results show that PDMS2200 could aggravate the microphase separation of the modified coatings, increase the surface-free energy, and reduce its elastic modulus; when the microphase separation exceeded a certain degree, increasing PDMS2200 would decrease the tensile properties. The PED-TDI polyurethane-modified silicone coating prepared with the formula of PU-Si17 had the best tensile properties and antifouling properties among all modified coatings.
Collapse
|
2
|
He Z, Wu H, Shi Z, Kong Z, Ma S, Sun Y, Liu X. Facile Preparation of Robust Superhydrophobic/Superoleophilic TiO 2-Decorated Polyvinyl Alcohol Sponge for Efficient Oil/Water Separation. ACS OMEGA 2022; 7:7084-7095. [PMID: 35252699 PMCID: PMC8892669 DOI: 10.1021/acsomega.1c06775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Oily wastewater and oil spills pose a threat to the environment and human health, and porous sponge materials are highly desired for oil/water separation. Herein, we design a new superhydrophobic/superoleophilic TiO2-decorated polyvinyl alcohol (PVA) sponge material for efficient oil/water separation. The TiO2-PVA sponge is obtained by firmly anchoring TiO2 nanoparticles onto the skeleton surface of pristine PVA sponge via the cross-linking reactions between TiO2 nanoparticles and H3BO3 and KH550, followed by the chemical modification of 1H,1H,2H,2H-perfluorodecyltrichlorosilane. The as-prepared TiO2-PVA sponge shows a high water contact angle of 157° (a sliding angle of 5.5°) and an oil contact angle of ∼0°, showing excellent superhydrophobicity and superoleophilicity. The TiO2-PVA sponge exhibits excellent chemical stability, thermal stability, and mechanical durability in terms of immersing it in the corrosive solutions and solvents, boiling it in water, and the sandpaper abrasion test. Moreover, the as-prepared TiO2-PVA sponge possesses excellent absorption capacity of oils or organic solvents ranging from 4.3 to 13.6 times its own weight. More importantly, the as-prepared TiO2-PVA sponge can separate carbon tetrachloride from the oil-water mixture with a separation efficiency of 97.8% with the aid of gravity and maintains a separation efficiency of 96.5% even after 15 cyclic oil/water separation processes. Therefore, the rationally designed superhydrophobic/superoleophilic TiO2-PVA sponge shows great potential in practical applications of dealing with oily wastewater and oil spills.
Collapse
Affiliation(s)
- Zhiwei He
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hanqing Wu
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Zhen Shi
- Institute
of Advanced Magnetic Materials, College of Materials and Environmental
Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Zhe Kong
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shiyu Ma
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yuping Sun
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xianguo Liu
- Institute
of Advanced Magnetic Materials, College of Materials and Environmental
Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| |
Collapse
|
3
|
Dai G, Ai X, Mei L, Ma C, Zhang G. Kill-Resist-Renew Trinity: Hyperbranched Polymer with Self-Regenerating Attack and Defense for Antifouling Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13735-13743. [PMID: 33710850 DOI: 10.1021/acsami.1c02273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traditional antifouling coatings are generally based on a single antifouling mechanism, which can hardly meet the needs of different occasions. Here, a single "kill-resist-renew trinity" polymeric coating integrating fouling killing, resistance, and releasing functions is reported. To achieve the design, a novel monomer-tertiary carboxybetaine ester acrylate with the antifouling group N-(2,4,6-trichlorophenyl)maleimide (TCB-TCPM) is synthesized and copolymerized with methacrylic anhydride via reversible addition-fragmentation chain transfer polymerization yielding a degradable hyperbranched polymer. Such a polymer at the surface/seawater is able to hydrolyze and degrade to short segments forming a dynamic surface (releasing). The hydrolysis of TCB-TCPM generates the antifouling groups TCPM (killing) and zwitterionic groups (resistance). Such a polymeric coating exhibits a controllable degradation rate, which increases with the degrees of branching. The antibacterial assay demonstrates that the antifouling ability arise from the synergistic effect of "attacking" and "defending". This study provides a new strategy to solve the challenging problem of marine biofouling.
Collapse
Affiliation(s)
- Guoxiong Dai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaoqing Ai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liqin Mei
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Phoungtawee P, Seidi F, Treetong A, Warin C, Klamchuen A, Crespy D. Polymers with Hemiaminal Ether Linkages for pH-Responsive Antibacterial Materials. ACS Macro Lett 2021; 10:365-369. [PMID: 35549058 DOI: 10.1021/acsmacrolett.1c00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibacterial materials containing biocides suffer from the fact that biocides are usually quickly released and hence display a limited antibacterial ability over a long period of time. To overcome this problem, the antibacterial agent 6-chloropurine is conjugated to a monomer via a hemiaminal ether linkage. The functional monomer is then reacted with a urethane acrylate by photopolymerization to yield thin polymer coatings. The release of the antibacterial agent from the coatings is sustained due to the slow kinetics of the hydrolysis of the hemiaminal ether linkage. Antibacterial performance is achieved against S. aureus and E. coli bacteria. This simple strategy can be applied for the rapid preparation of antibacterial coatings on various substrates and other applications such as antifouling or anticorrosion coatings.
Collapse
Affiliation(s)
- Piangtawan Phoungtawee
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Choochart Warin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
5
|
Development of photoresponsive coumarin-modified ethylene-co-vinyl alcohol copolymers with antifouling behavior. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Hu P, Xie Q, Ma C, Zhang G. Silicone-Based Fouling-Release Coatings for Marine Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2170-2183. [PMID: 32013443 DOI: 10.1021/acs.langmuir.9b03926] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine biofouling profoundly influences marine industries and activities. It slows the speed and increases the fuel consumption of ships, corrodes offshore platforms, and blocks seawater pipelines. The most effective and economical antifouling approach uses coatings. Fouling-release coatings (FRCs) with low surface free energy and high elasticity weakly adhere to marine organisms, so they can be readily removed by the water shear force. FRCs have attracted increasing interest because they are biocide-free and hence ecofriendly. However, traditional silicone-based FRCs have weak adhesion to substrates, low mechanical strength, and low fouling resistance, limiting their applications. In recent years, many attempts have been made to improve their mechanical properties and fouling resistance. This review deals with the progress in the construction of high-performance silicone-based fouling-release surfaces.
Collapse
Affiliation(s)
- Peng Hu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
7
|
Chen Y, Wen Y, Chen G, Zhang H, Wang Z. Fabrication of anti-algae coatings by using quaternary ammonium compounds for wastewater treatment facilities: Anti-algae performance and mechanisms. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Kliewer S, Wicha SG, Bröker A, Naundorf T, Catmadim T, Oellingrath EK, Rohnke M, Streit WR, Vollstedt C, Kipphardt H, Maison W. Contact-active antibacterial polyethylene foils via atmospheric air plasma induced polymerisation of quaternary ammonium salts. Colloids Surf B Biointerfaces 2019; 186:110679. [PMID: 31810045 DOI: 10.1016/j.colsurfb.2019.110679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Polyethylene (PE) foils were modified with potent contact-active antibacterial quaternary ammonium salts (QAS) by an atmospheric air plasma activation step, followed by graft-polymerisation of vinylbenzyltrimethylammonium chloride (VBTAC) monomers. The presented approach uses a cost efficient air plasma activation and subsequent radical polymerisation in highly concentrated aqueous monomer solutions to generate efficient antibacterial materials. The obtained contact-active poly-VBTAC modified PE foils feature a homogeneous and 300 nm thick polymer layer with a high charge density of approximately 1016 N+/cm2. The antibacterial properties were evaluated against Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, S. epidermidis) bacteria. The materials showed strong antibacterial activity by eradicating all the inoculated bacteria with bacterial challenges of 104 to 105 CFU/cm2 and good reductions even at maximum challenge (108 CFU/cm2). We have confirmed contact-activity by an agar diffusion assay. The obtained materials are therefore highly attractive for applications, for example, in packaging and are a contribution to an ecomic and green antimicrobial management without release of biocides to the environment.
Collapse
Affiliation(s)
- Serge Kliewer
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Sebastian G Wicha
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Astrid Bröker
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Tim Naundorf
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Tugba Catmadim
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eva Katharina Oellingrath
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Marcus Rohnke
- Justus-Liebig-Universität Giessen, Center for Materials Science, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - Wolfgang R Streit
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Christel Vollstedt
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Helmut Kipphardt
- Metall-Chemie Technologies GmbH, Kaiser-Wilhelm-Strasse 93, 20355 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
9
|
Mansouri J, Truong VK, MacLaughlin S, Mainwaring DE, Moad G, Dagley IJ, Ivanova EP, Crawford RJ, Chen V. Polymerization-Induced Phase Segregation and Self-Assembly of Siloxane Additives to Provide Thermoset Coatings with a Defined Surface Topology and Biocidal and Self-Cleaning Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1610. [PMID: 31766238 PMCID: PMC6915580 DOI: 10.3390/nano9111610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022]
Abstract
In this work, we report on the incorporation of a siloxane copolymer additive, poly((2-phenylethyl) methylsiloxane)-co(1-phenylethyl) methylsiloxane)-co-dimethylsiloxane), which is fully soluble at room temperature, in a rapid-cure thermoset polyester coating formulation. The additive undergoes polymerization-induced phase segregation (PIPS) to self-assemble on the coating surface as discrete discoid nanofeatures during the resin cure process. Moreover, the copolymer facilitates surface co-segregation of titanium dioxide pigment microparticulate present in the coating. Depending on the composition, the coatings can display persistent superhydrophobicity and self-cleaning properties and, surprisingly, the titanium dioxide pigmented coatings that include the siloxane copolymer additive display high levels of antibacterial performance against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. This antibacterial performance is believed to be associated with the unique surface topology of these coatings, which comprise stimuli-responsive discoid nanofeatures. This paper provides details of the surface morphology of the coatings and how these relates to the antimicrobial properties of the coating.
Collapse
Affiliation(s)
- Jaleh Mansouri
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Cooperative Research Centre for Polymers, Notting Hill, VIC 3168, Australia; (V.K.T.); (I.J.D.)
| | - Vi Khanh Truong
- Cooperative Research Centre for Polymers, Notting Hill, VIC 3168, Australia; (V.K.T.); (I.J.D.)
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (D.E.M.); (E.P.I.)
- Nanobiotechnology Laboratory, School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia;
| | | | - David E. Mainwaring
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (D.E.M.); (E.P.I.)
| | - Graeme Moad
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Ian J. Dagley
- Cooperative Research Centre for Polymers, Notting Hill, VIC 3168, Australia; (V.K.T.); (I.J.D.)
- Defence Science and Technology, Department of Defence, 506 Lorimer Street, Port Melbourne, VIC 3207, Australia
| | - Elena P. Ivanova
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (D.E.M.); (E.P.I.)
- Nanobiotechnology Laboratory, School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia;
| | - Russell J. Crawford
- Nanobiotechnology Laboratory, School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia;
| | - Vicki Chen
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- School of Chemical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Li J, Li X, Yang P, Mu Q, Zhang M, Ding Y, Li J. Preparation and properties of gelatin hydrolysate modified with polysiloxane quaternary ammonium salts. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:593-607. [PMID: 30896373 DOI: 10.1080/09205063.2019.1592798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PSiQAEp-GH polymers were synthesized by the reaction of gelatin hydrolysate (GH) and polysiloxane quaternary ammonium salts containing epoxy group (PSiQAEp) with different molecular weight from 3147 to 12996. The results of FTIR, 1H NMR and 13C NMR showed that the reaction occurred between primary amino group of arginine in GH and epoxy of PSiQAEp. The XRD and DSC studies showed that the degree of short-range order of PSiQAEp-GH reduced and its glass transition temperature (Tg) lowered more than 10 °C compared with GH. The determinations of moisture absorption and contact angle (CA) indicated that the hydrophobility of PSiQAEp-GH was better than GH. The tests of inhibitory zone and minimum bactericidal concentration (MBC) illustrated that the PSiQAEp-GHs exhibited excellent antibacterial activity, and the antibacterial activity depended on both the chemical structure of PSiQAEp-GHs and the biological structure of the bacteria.
Collapse
Affiliation(s)
- Junying Li
- a School of Chemistry & Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , P. R. China.,b Shandong Provincial Key Laboratory for Special Silicone-Containing Materials , Jinan , P. R. China
| | - Xiaoliang Li
- a School of Chemistry & Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Pengfei Yang
- a School of Chemistry & Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , P. R. China.,b Shandong Provincial Key Laboratory for Special Silicone-Containing Materials , Jinan , P. R. China
| | - Qiuhong Mu
- b Shandong Provincial Key Laboratory for Special Silicone-Containing Materials , Jinan , P. R. China
| | - Mingyi Zhang
- a School of Chemistry & Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Yunqiao Ding
- a School of Chemistry & Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Jiachun Li
- a School of Chemistry & Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| |
Collapse
|
11
|
Efficacy of polyurethane graft on cyclodextrin to control drug release for tumor treatment. J Colloid Interface Sci 2019; 534:215-227. [DOI: 10.1016/j.jcis.2018.09.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/03/2023]
|
12
|
Cuervo-Rodríguez R, López-Fabal F, Gómez-Garcés JL, Muñoz-Bonilla A, Fernández-García M. Contact Active Antimicrobial Coatings Prepared by Polymer Blending. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/01/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Rocío Cuervo-Rodríguez
- Facultad de Ciencias Químicas; Universidad Complutense de Madrid; Avenida Complutense s/n, Ciudad Universitaria 28040 Madrid Spain
| | - Fátima López-Fabal
- Hospital Universitario de Móstoles; C/Río Júcar, s/n 28935 Móstoles Madrid Spain
| | - José L. Gómez-Garcés
- Hospital Universitario de Móstoles; C/Río Júcar, s/n 28935 Móstoles Madrid Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/Juan de la Cierva 3 28006 Madrid Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/Juan de la Cierva 3 28006 Madrid Spain
| |
Collapse
|
13
|
Liu C, Xie Q, Ma C, Zhang G. Fouling Release Property of Polydimethylsiloxane-Based Polyurea with Improved Adhesion to Substrate. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Liu
- Faculty of Materials
Science and Engineering, Key
Laboratory of Polymer Processing Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials
Science and Engineering, Key
Laboratory of Polymer Processing Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials
Science and Engineering, Key
Laboratory of Polymer Processing Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials
Science and Engineering, Key
Laboratory of Polymer Processing Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
14
|
Kim SH, Lee S, In I, Park SY. Synthesis and antibacterial activity of surface-coated catechol-conjugated polymer with silver nanoparticles on versatile substrate. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sung Han Kim
- Department of IT Convergence; Korea National University of Transportation; Chungju-Si 380-702 Korea
| | - Sangkug Lee
- IT Convergence Material R&D Group; Korea Institute of Industrial Technology; Cheonan-si Chungcheongnam-do 35-3 Korea
| | - Insik In
- Department of IT Convergence; Korea National University of Transportation; Chungju-Si 380-702 Korea
- Department of Polymer Engineering; Korea National University of Transportation; Chungju-Si 380-702 Korea
| | - Sung Young Park
- Department of IT Convergence; Korea National University of Transportation; Chungju-Si 380-702 Korea
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju-Si 380-702 Korea
| |
Collapse
|
15
|
Song Y, Gao Y, Wan X, Luo F, Li J, Tan H, Fu Q. Dual-functional anticoagulant and antibacterial blend coatings based on gemini quaternary ammonium salt waterborne polyurethane and heparin. RSC Adv 2016. [DOI: 10.1039/c5ra27081b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A simple design of the dual-functional anticoagulant and antibacterial blend coatings with controlled release of heparin.
Collapse
Affiliation(s)
- Yuanqing Song
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Yunlong Gao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
- Research Institute for Strengthening Technology
| | - Xinyuan Wan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Feng Luo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Jiehua Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Hong Tan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| | - Qiang Fu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
16
|
Shen M, Liang G, Gu A, Yuan L. Development of high performance dental resin composites with outstanding antibacterial activity, high mechanical properties and low polymerization shrinkage based on a SiO2 hybridized tetrapod-like zinc oxide whisker with CC bonds. RSC Adv 2016. [DOI: 10.1039/c6ra13498j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel dental resin composites with outstanding antibacterial activity, high mechanical properties and low polymerization shrinkage were fabricated with SiO2 hybridized tetrapod-like zinc oxide whiskers, and the origin behind was revealed.
Collapse
Affiliation(s)
- Meng Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Guozheng Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Aijuan Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Li Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
17
|
Wang Y, Li Z, Ma W, Kinunda G, Qu H, Zhong Q. Steam treatment of a hollow lithium phosphate catalyst: enhancing carbon deposition resistance and improving the catalytic performance of propylene oxide rearrangement. RSC Adv 2016. [DOI: 10.1039/c6ra09559c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The reaction mechanism of propylene oxide rearrangement on a hollow lithium phosphate catalyst in the presence of steam.
Collapse
Affiliation(s)
- Yanan Wang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Zhishan Li
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Weihua Ma
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | | | - Hongxia Qu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Qin Zhong
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| |
Collapse
|
18
|
Peng C, Li J, Wu Z, Peng W, Zhou D. Investigating into the liquid oxygen compatibility of a modified epoxy resin containing silicon/phosphorus and its mechanical behavior at cryogenic temperature. RSC Adv 2016. [DOI: 10.1039/c6ra06033a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivative (DOPO–TVS) was synthesized through a reaction between DOPO and triethoxyvinylsilane (TVS).
Collapse
Affiliation(s)
- Cong Peng
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jialiang Li
- School of Aeronautics and Astronautics
- Faculty of Vehicle Engineering and Mechanics
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian 116024
| | - Zhanjun Wu
- School of Aeronautics and Astronautics
- Faculty of Vehicle Engineering and Mechanics
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian 116024
| | - Weibin Peng
- Beijing Institute of Astronautical Systems Engineering
- Beijing
- China
| | - Dayu Zhou
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|