1
|
Mohimont F, Rieger J, Stoffelbach F. Synthesis of New Glycine-Based Polymers and their Thermoresponsive Behavior in Water. Macromol Rapid Commun 2024; 45:e2400286. [PMID: 38851296 DOI: 10.1002/marc.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Indexed: 06/10/2024]
Abstract
In this work, new glycine-derived polymers are developed that exhibit thermoresponsive properties in water. Therefore, a series of monomers containing one, two, or three amide functional groups and one terminal cyanomethyl group is synthesized. The resulting homopolymers, obtained by free radical polymerization (FRP) and reversible addition fragmentation chain transfer (RAFT) polymerization, display a sharp and reversible upper critical solution temperature (UCST)-type phase transition in water. Additionally, it is shown that the cloud point (TCP) can be adjusted over more than 60 °C by the number of glycyl groups present in the monomer structure and by the polymer's molar mass. These novel thermoresponsive polymers based on cyanomethylglycinamide enrich the range of nonionic UCST polymers and are promising to find applications in various fields.
Collapse
Affiliation(s)
- Florent Mohimont
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Cedex 05, Paris, 75252, France
| | - Jutta Rieger
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Cedex 05, Paris, 75252, France
| | - François Stoffelbach
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Cedex 05, Paris, 75252, France
| |
Collapse
|
2
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Nishimura SN, Sato D, Koga T. Mechanically Tunable Hydrogels with Self-Healing and Shape Memory Capabilities from Thermo-Responsive Amino Acid-Derived Vinyl Polymers. Gels 2023; 9:829. [PMID: 37888402 PMCID: PMC10606565 DOI: 10.3390/gels9100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this study, we report the fabrication and characterization of self-healing and shape-memorable hydrogels, the mechanical properties of which can be tuned via post-polymerization crosslinking. These hydrogels were constructed from a thermo-responsive poly(N-acryloyl glycinamide) (NAGAm) copolymer containing N-acryloyl serine methyl ester (NASMe) units (5 mol%) that were readily synthesized via conventional radical copolymerization. This transparent and free-standing hydrogel is produced via multiple hydrogen bonds between PNAGAm chains by simply dissolving the polymer in water at a high temperature (~90 °C) and then cooling it. This hydrogel exhibited moldability and self-healing properties. The post-polymerization crosslinking of the amino acid-derived vinyl copolymer network with glutaraldehyde, which acts as a crosslinker between the hydroxy groups of the NASMe units, tuned mechanical properties such as viscoelasticity and tensile strength. The optimal crosslinker concentration efficiently improved the viscoelasticity. Moreover, these hydrogels exhibited shape fixation (~60%)/memory (~100%) behavior owing to the reversible thermo-responsiveness (upper critical solution temperature-type) of the PNAGAm units. Our multifunctional hydrogel, with moldable, self-healing, mechanical tunability via post-polymerization crosslinking, and shape-memorable properties, has considerable potential for applications in engineering and biomedical materials.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| | | | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| |
Collapse
|
4
|
Tian Y, Lai J, Li C, Sun J, Liu K, Zhao C, Zhang M. Poly( N-acryloyl glycinamide- co- N-acryloxysuccinimide) Nanoparticles: Tunable Thermo-Responsiveness and Improved Bio-Interfacial Adhesion for Cell Function Regulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7867-7877. [PMID: 36740782 DOI: 10.1021/acsami.2c22267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Poly(N-acryloyl glycinamide) (PNAGA) can form high-strength hydrogen bonds (H-bonds) through the dual amide motifs in the side chain, allowing the polymer to exhibit gelation behavior and an upper critical solution temperature (UCST) property. These features make PNAGA a candidate platform for biomedical devices. However, most applications focused on PNAGA hydrogels, while few focused on PNAGA nanoparticles. Improving the UCST tunability and bio-interfacial adhesion of the PNAGA nanoparticles may expand their applications in biomedical fields. To address the issues, we established a reactive H-bond-type P(NAGA-co-NAS) copolymer via reversible addition-fragmentation chain transfer polymerization of NAGA and N-acryloxysuccinimide (NAS) monomers. The UCST behaviors and the bio-interfacial adhesion toward the proteins and cells along with the potential application of the copolymer nanoparticles were investigated in detail. Taking advantage of the enhanced H-bonding and reactivity, the copolymer exhibited a tunable UCST in a broad temperature range, showing thermo-reversible transition between nanoparticles (PNPs) and soluble chains; the PNPs efficiently bonded proteins into nano-biohybrids while keeping the secondary structure of the protein, and more importantly, they also exhibited good adhesion ability to the cell membrane and significantly inhibited cell-specific propagation. These features suggest broad prospects for the P(NAGA-co-NAS) nanoparticles in the fields of biosensors, protein delivery, cell surface decoration, and cell-specific function regulation.
Collapse
Affiliation(s)
- Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| | - Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| | - Kang Liu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo315211, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| |
Collapse
|
5
|
Diehl F, Hageneder S, Fossati S, Auer SK, Dostalek J, Jonas U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem Soc Rev 2022; 51:3926-3963. [PMID: 35471654 PMCID: PMC9126188 DOI: 10.1039/d1cs01083b] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.
Collapse
Affiliation(s)
- Fiona Diehl
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Stefan Fossati
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Simone K Auer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- CEST Competence Center for Electrochemical Surface Technologies, 3430 Tulln an der Donau, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| |
Collapse
|
6
|
Dinda P, Anas M, Banerjee P, Mandal TK. Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
7
|
Nishimura SN, Nishida K, Ueda T, Shiomoto S, Tanaka M. Biocompatible poly( N-(ω-acryloyloxy- n-alkyl)-2-pyrrolidone)s with widely-tunable lower critical solution temperatures (LCSTs): a promising alternative to poly( N-isopropylacrylamide). Polym Chem 2022. [DOI: 10.1039/d2py00154c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The biocompatible (co)polymers undergoes a thermal stimulus-driven liquid–liquid phase separation and form coacervates above the lower critical solution temperature (LCST). The LCSTs are able to be precisely controlled between 0 °C and 100 °C.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomoya Ueda
- Gladuate School of Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shohei Shiomoto
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- Gladuate School of Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
8
|
Gayathri V, Jaisankar SN, Samanta D. Temperature and pH responsive polymers: sensing applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1988636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Varnakumar Gayathri
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Sellamuthu Nagappan Jaisankar
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Debasis Samanta
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
9
|
Masuko K, Kumano C, Sugawara R, Nakabayashi K, Mori H. Polymerization‐induced self‐assembly of amino‐acid‐based nano‐objects by reversible addition–fragmentation chain‐transfer dispersion polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kazunori Masuko
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| | - Chiharu Kumano
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| | - Ryo Sugawara
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| | | | - Hideharu Mori
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| |
Collapse
|
10
|
Akiyama Y. Synthesis of Temperature-Responsive Polymers Containing Piperidine Carboxamide and N,N-diethylcarbamoly Piperidine Moiety via RAFT Polymerization. Macromol Rapid Commun 2021; 42:e2100208. [PMID: 34145666 DOI: 10.1002/marc.202100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/09/2021] [Indexed: 02/06/2023]
Abstract
In this study, poly(N-acryloyl-nipecotamide) (PNANAm), poly(N-acryloyl-isonipecotamide) (PNAiNAm), and poly(N-acryloyl-N,N-diethylnipecotamide) (PNADNAm) are synthesized as novel temperature-responsive polymers using reversible addition-fragmentation chain-transfer polymerization. Aqueous solutions of these three polymers are examined via temperature-dependent optical transmittance measurements. The PNANAm sample with a hydrophilic terminal group shows an upper critical solution temperature (UCST) in phosphate-buffered saline (PBS) when its molecular weight (Mn ) is 7600 or higher, whereas PNANAm (Mn < 7600) is soluble. The UCST is influenced by molecular weight and the polymer concentration. In contrast, PNANAm sample with nonionic terminal group shows UCST, when Mn is below 7600, suggesting that the terminal nonionic group possibly increases UCST of PNANAm. The urea addition experiment suggests that the driving force for expression of UCST of PNANAm is the formation of inter-and intramolecular hydrogen bonds among the polymer chains. PNAiNAm is soluble in PBS but exhibits an UCST in an appropriate concentration of ammonium sulfate. In contrast, PNADNAm exhibits a lower critical solution temperature. Comparing the chemical structure of these polymers and their phase transition behaviors suggests that the carboxamide group position in the piperidine ring could determine the UCST expression. These results could help design temperature-responsive polymers with a desired the cloud point temperature.
Collapse
Affiliation(s)
- Yoshikatsu Akiyama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
11
|
Zhang X, Kreuzer LP, Schwaiger DM, Lu M, Mao Z, Cubitt R, Müller-Buschbaum P, Zhong Q. Abnormal fast dehydration and rehydration of light- and thermo-dual-responsive copolymer films triggered by UV radiation. SOFT MATTER 2021; 17:2603-2613. [PMID: 33527960 DOI: 10.1039/d0sm02007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abnormal fast dehydration and rehydration of light- and thermo-dual-responsive copolymer films of poly(oligo(ethylene glycol) methyl ether methacrylate-co-6-(4-phenylazophenoxy)hexyl acrylate), abbreviated as P(OEGMA300-co-PAHA), are triggered by UV radiation. Both rapid kinetic processes are probed by in situ neutron reflectivity (NR). The transition temperatures (TTs) of P(OEGMA300-co-PAHA) are 53.0 (ambient conditions) and 52.5 °C (UV radiation, λ = 365 nm). Thin P(OEGMA300-co-PAHA) films show a random distribution of OEGMA300 and PAHA segments. They swell in a D2O vapor atmosphere at 23 °C (below TT) to a swelling ratio d/das-prep of 1.61 ± 0.01 and exhibit a D2O volume fraction φ(D2O) of 39.3 ± 0.5%. After being exposed to UV radiation for only 60 s, d/das-prep and φ(D2O) significantly decrease to 1.00 ± 0.01 and 13.4 ± 0.5%, respectively. Although the UV-induced trans-cis isomerization of the azobenzene in PAHA induces increased hydrophilicity, the configuration change causes a breaking of the intermolecular hydrogen bonds between OEGMA300 and D2O molecules and unexpected film shrinkage. As compared to thermal stimulus-induced dehydration, the present dehydration rate is 100 times faster. Removal of the UV radiation causes immediate rehydration. After 200 s, d/das-prep and φ(D2O) recover to their hydrated states, which is also 30 times faster than the initial hydration. At 60 °C (above TT), thin P(OEGMA300-co-PAHA) films switch to their collapsed state and are insensitive to UV radiation. Thus, the UV-induced fast dehydration and rehydration depend on the existence of hydrogen bonds.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Lucas P Kreuzer
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Dominik M Schwaiger
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Min Lu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany. and Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China. and Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
12
|
Van Guyse JFR, Bera D, Hoogenboom R. Adamantane Functionalized Poly(2-oxazoline)s with Broadly Tunable LCST-Behavior by Molecular Recognition. Polymers (Basel) 2021; 13:374. [PMID: 33530443 PMCID: PMC7865518 DOI: 10.3390/polym13030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/27/2023] Open
Abstract
Smart or adaptive materials often utilize stimuli-responsive polymers, which undergo a phase transition in response to a given stimulus. So far, various stimuli have been used to enable the modulation of drug release profiles, cell-interactive behavior, and optical and mechanical properties. In this respect, molecular recognition is a powerful tool to fine-tune the stimuli-responsive behavior due to its high specificity. Within this contribution, a poly(2-oxazoline) copolymer bearing adamantane side chains was synthesized via triazabicyclodecene-catalyzed amidation of the ester side chains of a poly(2-ethyl-2-oxazoline-stat-2-methoxycarbonylpropyl-2-oxazoline) statistical copolymer. Subsequent complexation of the pendant adamantane groups with sub-stoichiometric amounts (0-1 equivalents) of hydroxypropyl β-cyclodextrin or β-cyclodextrin enabled accurate tuning of its lower critical solution temperature (LCST) over an exceptionally wide temperature range, spanning from 30 °C to 56 °C. Furthermore, the sharp thermal transitions display minimal hysteresis, suggesting a reversible phase transition of the complexed polymer chains (i.e., the β-cyclodextrin host collapses together with the polymers) and a minimal influence by the temperature on the supramolecular association. Analysis of the association constant of the polymer with hydroxypropyl β-cyclodextrin via 1H NMR spectroscopy suggests that the selection of the macrocyclic host and rational polymer design can have a profound influence on the observed thermal transitions.
Collapse
Affiliation(s)
| | | | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium; (J.F.R.V.G.); (D.B.)
| |
Collapse
|
13
|
Wyers D, Goris T, De Smet Y, Junkers T. Amino acid acrylamide mimics: creation of a consistent monomer library and characterization of their polymerization behaviour. Polym Chem 2021. [DOI: 10.1039/d1py00735a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel consistent approach to mimic the structure of biopolymers via precision polymer synthesis with reversible deactivation radical polymerization (RDRP).
Collapse
Affiliation(s)
- Dries Wyers
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Toon Goris
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Yana De Smet
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Tanja Junkers
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia
| |
Collapse
|
14
|
Fu X, Xing C, Sun J. Tunable LCST/UCST-Type Polypeptoids and Their Structure-Property Relationship. Biomacromolecules 2020; 21:4980-4988. [PMID: 33307699 DOI: 10.1021/acs.biomac.0c01177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioinspired thermoresponsive polymeric materials with tunable phase-transition behaviors are highly desirable for biomedical applications. Here, we reported a facile approach for the synthesis of both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) types of thermoresponsive polypeptoids with tunable phase-transition temperature in the range of 29--55 °C. The introduction of alkyl groups and ethylene glycol (EG) units results in a controlled phase-transition behavior under fairly mild conditions. A very sharp transition (ΔT ≤ 1.5 °C) is observed by simply adjusting pH and the alkyl chain length. In particular, the carboxyl-containing polypeptoids display designable UCST behavior, which can be finely tuned in both water and methanol. All these features make the obtained polymers beneficial for practical applications. More interestingly, we demonstrate that the hydrophilic EG group behaves as an excellent regulator to tune the UCST behavior, while the hydrophobic alkyl residues show remarkable capability to regulate the LCST behavior of the system. We hope that such systematic structure-property studies will enable the design of smart polymer materials to meet the specific needs of future applications.
Collapse
Affiliation(s)
- Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Xing
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
15
|
Biswas CS, Biswas A, Galluzzi M, Shekh MI, Wang Q, Ray B, Maiti P, Stadler FJ. Synthesis and characterization of novel amphiphilic biocompatible block-copolymers of poly(N-isopropylacrylamide)-b-poly(l-phenylalanine methyl ester) by RAFT polymerization. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Yamano T, Higashi N, Koga T. Unique Self-Assembly of Sequence-Controlled Amino Acid Derived Vinyl Polymer with Gradient Thermoresponsiveness along a Chain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6550-6556. [PMID: 32479728 DOI: 10.1021/acs.langmuir.0c01036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel water-soluble amino acid derived vinyl polymer whose block sequence was designed to achieve a gradient thermoresponsiveness along a chain was accurately prepared through an ultrarapid reversible addition-fragmentation chain-transfer polymerization. The polymer exhibited unique temperature-regulated self-assembly in water, leading to multiple nanostructural transformations including disassembly-to-ordered and ordered-to-ordered transitions. The morphologies were drastically changed by heating the solution from 4 °C (soluble form) to 20 °C (spherical micelle) to 70 °C (vesicle). Moreover, such transitions exhibited hysteresis upon cooling, namely, from 70 °C (vesicle) to 20 °C (wormlike micelle) to 4 °C (soluble form). In this polymer system, the specific monomer sequence contributed to the self-assembly behavior. These findings provide significant insight into the design of new thermoresponsive nanomaterials with potential applications in biomedical chemistry.
Collapse
Affiliation(s)
- Tsukasa Yamano
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
17
|
Koga T, Tomimori K, Higashi N. Transparent, High‐Strength, and Shape Memory Hydrogels from Thermo‐Responsive Amino Acid–Derived Vinyl Polymer Networks. Macromol Rapid Commun 2020; 41:e1900650. [DOI: 10.1002/marc.201900650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/24/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry & BiochemistryFaculty of Science & EngineeringDoshisha University Kyotanabe Kyoto 610‐0321 Japan
| | - Kotoha Tomimori
- Department of Molecular Chemistry & BiochemistryFaculty of Science & EngineeringDoshisha University Kyotanabe Kyoto 610‐0321 Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry & BiochemistryFaculty of Science & EngineeringDoshisha University Kyotanabe Kyoto 610‐0321 Japan
| |
Collapse
|
18
|
|
19
|
Yamano T, Higashi N, Koga T. Precisely Synthesized Sequence-Controlled Amino Acid-Derived Vinyl Polymers: New Insights into Thermo-Responsive Polymer Design. Macromol Rapid Commun 2020; 41:e1900550. [PMID: 31894629 DOI: 10.1002/marc.201900550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Indexed: 01/01/2023]
Abstract
Thermo-responsive block copolymers are of great interest in biomedical and nanotechnological fields. These polymers achieve a versatile and complex responsiveness through a sophisticated and intricate combination of different thermo-responsive blocks. While their utility is clear, the fundamental design principles of such vinyl polymers are not yet thoroughly understood. Herein, a precise synthesis of sequence-controlled amino-acid-derived vinyl polymers and their unique thermal response in water are reported. Seven distinct block (random) copolymers that contain two kinds of amino acid blocks (poly(N-acryloyl alanine(A)- or glycine(G)-methyl ester)) with the same total chain length (degree of polymerization [DP] ≈30) and chemical composition (A/G ≈1), but with systematic variations in the block sequence and length, with an accuracy target of DP ± 1, are prepared. By specifying the primary structure, the thermal responses including transition temperature, thermo-sensitivity, and microenvironment in the dehydrated state can be finely tuned. These findings offer new directions in the design of structurally and functionally diverse thermo-responsive vinyl polymers.
Collapse
Affiliation(s)
- Tsukasa Yamano
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| |
Collapse
|
20
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Qin H, Chen X, Luo D, Wang B, Tan Q, Liang H, Lu J, Huang J. Synthesis of Thermo‐, Oxidation‐, pH‐, and CO
2
‐Responsive Polymers via the Combination of Aza‐Michael and Thiol‐Michael Reactions in One Pot. Macromol Rapid Commun 2019; 40:e1900342. [DOI: 10.1002/marc.201900342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Herong Qin
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐Based CompositesSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Xu Chen
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐Based CompositesSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Dong Luo
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐Based CompositesSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Biyun Wang
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐Based CompositesSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Qinglan Tan
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐Based CompositesSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Hui Liang
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐Based CompositesSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Jiang Lu
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐Based CompositesSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| | - Jianbing Huang
- MOE of the Key Laboratory for Polymeric Composite and Functional MaterialsGuangdong Provincial Key Laboratory for High Performance Resin‐Based CompositesSchool of ChemistrySun Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
22
|
Chao H, Li G, Yu J, Liu Z, Liu Z, Jiang J. Backbone‐Hydrolyzable Poly(oligo(ethylene glycol) bis(glycidyl ether)‐
alt
‐ketoglutaric acid) with Tunable LCST Behavior. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Huan Chao
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Jiabao Yu
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Zhaotie Liu
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Zhong‐Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| |
Collapse
|
23
|
Loukotová L, Bogomolova A, Konefal R, Špírková M, Štěpánek P, Hrubý M. Hybrid κ-carrageenan-based polymers showing "schizophrenic" lower and upper critical solution temperatures and potassium responsiveness. Carbohydr Polym 2019; 210:26-37. [PMID: 30732762 DOI: 10.1016/j.carbpol.2019.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/29/2022]
Abstract
Novel multiresponsive hybrid biocompatible systems of κ-carrageenan-graft-poly(2-isopropyl-2-oxazoline-co-2-butyl-2-oxazoline)s with unique combination of responsiveness to external stimuli were synthesized and studied. The polymer thermoresponsive behavior proved the existence of both lower and upper critical solution temperatures in aqueous milieu, forming gel at lower temperature, a solution at room temperature and cloudy nanophase-separated dispersion at elevated temperature. The limit temperatures can easily be adjusted by the polyoxazoline graft length and grafting density. Moreover, the polymer behavior is additionally dependent on the concentration of potassium ions. The polymers behave similarly as the original κ-carrageenan, and thus, the poly(2-alkyl-2-oxazoline) grafts do not decrease the ability of the κ-carrageenan to form the self-assembled structures. Molecular principles beyond this multistimuli-responsive behavior were elucidated with the use of dynamic light scattering, magnetic resonance and fluorescence measurements as well as atomic force microscopy. These polymers could be used in a wide range of biological applications demanding thermo- and potassium-responsiveness.
Collapse
Affiliation(s)
- L Loukotová
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - A Bogomolova
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - R Konefal
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - M Špírková
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - P Štěpánek
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - M Hrubý
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic.
| |
Collapse
|
24
|
Jana S, Anas M, Maji T, Banerjee S, Mandal TK. Tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST. Polym Chem 2019. [DOI: 10.1039/c8py01512k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-stimuli responsive tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST under different conditions are presented.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Mahammad Anas
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tanmoy Maji
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sanjib Banerjee
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
25
|
Nishimura SN, Higashi N, Koga T. A novel thermo-responsive multiblock architecture composed of a sequential peptide and an amino acid-derived vinyl polymer: toward protein-mimicking single-chain folding. Chem Commun (Camb) 2019; 55:1498-1501. [DOI: 10.1039/c8cc09051c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel multiblock hybrid copolymer composed of a β-sheet peptide and a glycine-derived vinyl polymer was developed to achieve single-chain folding into well-defined nanoparticles.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Department of Molecular Chemistry & Biochemistry
- Faculty of Science & Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry & Biochemistry
- Faculty of Science & Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Tomoyuki Koga
- Department of Molecular Chemistry & Biochemistry
- Faculty of Science & Engineering
- Doshisha University
- Kyotanabe
- Japan
| |
Collapse
|
26
|
Nishimura SN, Higashi N, Koga T. Synthesis of peptide–vinyl polymer multiblock hybrids by nitroxide-mediated polymerization: breaking the limitations of monomer compatibility. Polym Chem 2019. [DOI: 10.1039/c8py01330f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitroxide-mediated polymerization of a wide variety of vinyl monomers using a novel TIPNO-based cyclic peptide successfully provided multiblock architectures composed of sequential peptides and vinyl polymers in one step.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Department of Molecular Chemistry & Biochemistry
- Faculty of Science & Engineering
- Doshisha University
- Kyoto
- Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry & Biochemistry
- Faculty of Science & Engineering
- Doshisha University
- Kyoto
- Japan
| | - Tomoyuki Koga
- Department of Molecular Chemistry & Biochemistry
- Faculty of Science & Engineering
- Doshisha University
- Kyoto
- Japan
| |
Collapse
|
27
|
Yu J, Chao H, Li G, Tang R, Liu Z, Liu Z, Jiang J. Backbone-Based LCST-Type Hyperbranched Poly(oligo(ethylene glycol)) with CO2
-Reversible Iminoboronate Linkers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiabao Yu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an Shaanxi Province 710062 P. R. China
| | - Huan Chao
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an Shaanxi Province 710062 P. R. China
| | - Guo Li
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an Shaanxi Province 710062 P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials; School of Life Sciences; Anhui University; Hefei Anhui Province 230601 P. R. China
| | - Zhaotie Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an Shaanxi Province 710062 P. R. China
| | - Zhongwen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an Shaanxi Province 710062 P. R. China
| | - Jinqiang Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an Shaanxi Province 710062 P. R. China
| |
Collapse
|
28
|
Käfer F, Pretscher M, Agarwal S. Tuning the Phase Transition from UCST-Type to LCST-Type by Composition Variation of Polymethacrylamide Polymers. Macromol Rapid Commun 2018; 39:e1800640. [DOI: 10.1002/marc.201800640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/19/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Florian Käfer
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, Universitätsstrasse 30; 95440 Bayreuth Germany
| | - Martin Pretscher
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, Universitätsstrasse 30; 95440 Bayreuth Germany
| | - Seema Agarwal
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, Universitätsstrasse 30; 95440 Bayreuth Germany
| |
Collapse
|
29
|
Stepwise Thermo-Responsive Amino Acid-Derived Triblock Vinyl Polymers: ATRP Synthesis of Polymers, Aggregation, and Gelation Properties via Flower-Like Micelle Formation. MATERIALS 2018; 11:ma11030424. [PMID: 29543721 PMCID: PMC5873003 DOI: 10.3390/ma11030424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
Novel thermo-responsive ABA-type triblock copolymers (poly(NAAMen-b-NAGMe240-b-NAAMen), n = 18-72) composed of naturally occurring amino acid-based vinyl polymer blocks such as poly(N-acryloyl-l-alanine methyl ester (poly(NAAMe)) as the A segment and poly(N-acryloyl-glycine methylester)(poly(NAGMe)) as the B segment have been synthesized by the atom transfer radical polymerization (ATRP). Their thermal behaviors were analyzed in dilute aqueous solutions by turbidimetry. The turbidity curves provided two-step LCST transitions, and a flower-like micelle formation was confirmed at the temperature region between the first and second LCST transitions by dynamic light scattering, AFM and TEM. At higher copolymer concentrations, hydrogels were obtained at temperatures above the first LCST due to network formation induced with the flower-like micelles as cross-linker. The hydrogels were found to be switched to a sol state when cooled below the first LCST. These hydrogels also exhibited self-healable and injectable capabilities, which were evaluated by rheological measurements.
Collapse
|
30
|
Bauri K, Nandi M, De P. Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 2018. [DOI: 10.1039/c7py02014g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances achieved in the study of various stimuli-responsive polymers derived from natural amino acids have been reviewed.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- India
| | - Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
31
|
Temperature induced self-assembly of amino acid–derived vinyl block copolymers via dual phase transitions. J Colloid Interface Sci 2017; 500:341-348. [DOI: 10.1016/j.jcis.2017.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 11/20/2022]
|
32
|
Thermo-responsive polymer brushes on glass plate prepared from a new class of amino acid-derived vinyl monomers and their applications in cell-sheet engineering. Colloids Surf B Biointerfaces 2017; 159:39-46. [PMID: 28779639 DOI: 10.1016/j.colsurfb.2017.07.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
In this study, we present a novel thermo-responsive polymer platform that is based on the alanine methyl ester-containing homopolymer (PNAAMe) and the copolymer with glycine methyl ester-based vinyl monomer (P(NAAMe-co-NAGMe)) brushes prepared via surface-initiated atom transfer radical polymerization. Water contact angles for these brushes measured at different temperatures reveal that the polymer brushes collapse and dehydrate around 13°C and 25°C (TTs), respectively, upon elevating the temperature. At 37°C, seeded fibroblasts (NIH/3T3) adhere to and spread well onto these brush surfaces although the copolymer brush of P(NAAMe-co-NAGMe) depresses the number of adherent cells less than half of that for the homopolymer of PNAAMe after 24h of cell culture due to increment in hydrophilicity. To prepare the cell-sheet, the cells are seeded on both polymer brushes and cultured at 37°C in the presence of serum. After 4days, the cells proliferated confluently on these brush surfaces. Lowering the temperature to 4°C and 20°C below TT of each brush led to the cell-sheet detachment as a monolayer form from the polymer brushes accompanying with the switching of surface affinity.
Collapse
|
33
|
Abstract
In this mini-review, we discuss multi-stimuli-responsive polymers, which exhibit upper critical solution temperature (UCST) behavior mainly in aqueous solutions, and focus on examples where counter ions, electricity, light, or pH influence the thermoresponsiveness of these polymers.
Collapse
Affiliation(s)
- Jukka Niskanen
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| | - Heikki Tenhu
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| |
Collapse
|
34
|
Koga T, Aso E, Higashi N. Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12378-12386. [PMID: 27340892 DOI: 10.1021/acs.langmuir.6b01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser)ester-b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Eri Aso
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
35
|
Koga T, Mima K, Matsumoto T, Higashi N. Amino Acid-derived Polymer with Changeable Enzyme Degradability based on pH-induced Structural Conversion from Polyester to Polypeptide. CHEM LETT 2015. [DOI: 10.1246/cl.150880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Kotaro Mima
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Takahiro Matsumoto
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| |
Collapse
|