1
|
Rekik H, Pichon L, Teymoorian T, Arab H, Sauvé S, El Khakani MA, Drogui P. Efficient electro-oxidation-based degradation of per- and polyfluoroalkyl (PFAS) persistent pollutants by using plasma torch synthesized pure-Magnéli phase-Ti 4O 7 anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122929. [PMID: 39427626 DOI: 10.1016/j.jenvman.2024.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Pure Magnéli-phase Ti4O7 were prepared by means of a Plasma Torch (PT) coating method and integrated into an advanced electro-catalytic oxidation (AEO) process in order to degrade perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) persistent pollutants present in waters. The X-ray diffraction analysis confirmed the polycrystalline nature of the pure Magnéli phase PT-Ti4O7 coatings (∼100 μm thick)). The Raman spectra of the PT-Ti4O7 coatings also exhibited the two characteristic peaks (at 138 and 183 cm-1) of the PT-Ti4O7 Magnéli phase. Scanning electron microscopy revealed the nanostructured hierarchical morphology of the PT-Ti4O7 thus conferring them high surface area. The PT-Ti4O7 anodes are shown to achieve higher degradation efficiencies towards PFOA and PFOS in comparison with the conventional boron-doped diamond anodes. By investigating several AEO parameters (including current density, treatment time, nature of the anode material), we were able to optimise the AEO process. Thus, for both PFOA and PFOS (at an initial concentration of 500 ppb in synthetic wastewaters), degradation efficiencies as high as 96.6% and 99.7% were achieved, respectively, with a current density of 20 mA/cm2, a treatment time of 120 min and PT-Ti4O7 mesh-type anodes. PFOA and PFOS can be degraded by both direct anodic electrochemical oxidation (•OH radicals) and indirect electrochemical oxidation via mediators, such as persulphate acid (H2S2O8) generated by sulphate anodic oxidation. The degradation of both compounds followed pseudo-first-order kinetics. The reaction rate constant (k) for PFOS removal was 4.63 × 10-2 min-1, whereas 2.76 × 10-2 min-1 was recorded for PFOA removal. Subsequently, we have used the above optimal AEO operating conditions to treat real wastewater effluents (containing 17 types of PFAS molecules with a total content of 8500 ppb) and achieved a degradation rate of 39.1%-87.4% for eight of the 17 PFAS compounds. The degradation rate was found to be dependent on the chemical structure and chain length of each PFOA/PFOS component.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, J3X 1P7, QC, Canada
| | - Termeh Teymoorian
- Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Sébastien Sauvé
- Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, J3X 1P7, QC, Canada.
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
2
|
Wang Z, You X, Lan L, Huang G, Zhu T, Tian S, Yang B, Zhuo Q. Electrocatalytic oxidation of hexafluoropropylene oxide homologues in water using a boron-doped diamond electrode. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39128835 DOI: 10.1080/09593330.2024.2382937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024]
Abstract
Hexafluoropropylene oxide (GenX) is a kind of substitute to PFOA, which has been listed in the Stockholm Convention. In this study, GenX was attempted to be degraded using a boron-doped diamond anode in the electrochemical oxidation system. The effects of operating parameters, including current density (0.5-10 mA/cm2), initial pH (3.0-11.49), initial concentration of GenX (20-150 mg/L), electrode distances (0.5-2 cm), electrolyte types (Na2SO4, NaCl, NaNO3 and NaHCO3) and Na2SO4 electrolyte concentration (40-80 mm), on GenX were studied. GenX can almost completely be degraded under the optimal operating parameters after 180 min of electrolysis. Free radical quenching experiments were carried out to investigate the effects of hydroxyl radicals and sulphate radicals on the degradation of GenX. The degradation intermediates were identified based on the ultra-high performance liquid chromatography equipped with a tandem mass spectrometer, and the degradation mechanisms were also proposed. Finally, the toxicities of GenX and its degradation products were evaluated using the QSAR models. The novelty is that the degradation mechanisms of the high concentration GenX (100 mg/L) were elucidated based on the free radical quenching experiments and the intermediates detected, when the degradation ratio reached 100%.
Collapse
Affiliation(s)
- Zihao Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Xiaolin You
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Liying Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Gang Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Tongyin Zhu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Shengpeng Tian
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Qiongfang Zhuo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan Key Laboratory of Emerging Contaminants, Dongguan, People's Republic of China
| |
Collapse
|
3
|
Najafinejad MS, Chianese S, Fenti A, Iovino P, Musmarra D. Application of Electrochemical Oxidation for Water and Wastewater Treatment: An Overview. Molecules 2023; 28:molecules28104208. [PMID: 37241948 DOI: 10.3390/molecules28104208] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the discharge of various emerging pollutants, chemicals, and dyes in water and wastewater has represented one of the prominent human problems. Since water pollution is directly related to human health, highly resistant and emerging compounds in aquatic environments will pose many potential risks to the health of all living beings. Therefore, water pollution is a very acute problem that has constantly increased in recent years with the expansion of various industries. Consequently, choosing efficient and innovative wastewater treatment methods to remove contaminants is crucial. Among advanced oxidation processes, electrochemical oxidation (EO) is the most common and effective method for removing persistent pollutants from municipal and industrial wastewater. However, despite the great progress in using EO to treat real wastewater, there are still many gaps. This is due to the lack of comprehensive information on the operating parameters which affect the process and its operating costs. In this paper, among various scientific articles, the impact of operational parameters on the EO performances, a comparison between different electrochemical reactor configurations, and a report on general mechanisms of electrochemical oxidation of organic pollutants have been reported. Moreover, an evaluation of cost analysis and energy consumption requirements have also been discussed. Finally, the combination process between EO and photocatalysis (PC), called photoelectrocatalysis (PEC), has been discussed and reviewed briefly. This article shows that there is a direct relationship between important operating parameters with the amount of costs and the final removal efficiency of emerging pollutants. Optimal operating conditions can be achieved by paying special attention to reactor design, which can lead to higher efficiency and more efficient treatment. The rapid development of EO for removing emerging pollutants from impacted water and its combination with other green methods can result in more efficient approaches to face the pressing water pollution challenge. PEC proved to be a promising pollutants degradation technology, in which renewable energy sources can be adopted as a primer to perform an environmentally friendly water treatment.
Collapse
Affiliation(s)
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Angelo Fenti
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Pasquale Iovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
4
|
Mirabediny M, Sun J, Yu TT, Åkermark B, Das B, Kumar N. Effective PFAS degradation by electrochemical oxidation methods-recent progress and requirement. CHEMOSPHERE 2023; 321:138109. [PMID: 36787844 DOI: 10.1016/j.chemosphere.2023.138109] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.
Collapse
Affiliation(s)
- Maryam Mirabediny
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Jun Sun
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia.
| |
Collapse
|
5
|
Luo Y, Khoshyan A, Al Amin M, Nolan A, Robinson F, Fenstermacher J, Niu J, Megharaj M, Naidu R, Fang C. Ultrasound-enhanced Magnéli phase Ti 4O 7 anodic oxidation of per- and polyfluoroalkyl substances (PFAS) towards remediation of aqueous film forming foams (AFFF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160836. [PMID: 36521599 DOI: 10.1016/j.scitotenv.2022.160836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Per-and polyfluoroalkyl substances (PFAS) remediation is still a challenge. In this study, we propose a hybrid system that combines electrochemical treatment with ultrasound irradiation, aiming for an enhanced degradation of PFAS. Equipped with a titanium suboxide (Ti4O7) anode, the electrochemical cell is able to remove perfluorooctanoic acid (PFOA) effectively. Under the optimal conditions (50 mA/cm2 current density, 0.15 M Na2SO4 supporting electrolyte, and stainless steel/Ti4O7/stainless steel electrode configuration with a gap of ∼10 mm), the electrochemical process achieves ∼100 % PFOA removal and 43 % defluorination after 6 h. Applying ultrasound irradiation (130 kHz) alone offers a limited PFOA removal, with 33 % PFOA removal and 5.5 % defluorination. When the electrochemical process is combined with ultrasound irradiation, we observe a significant improvement in the remediation performance, with ∼100 % PFOA removal and 63.5 % defluorination, higher than the sum of 48.5 % (43 % achieved by the electrochemical process, plus 5.5 % by the ultrasound irradiation), implying synergistic removal/oxidation effects. The hybrid system also consistently shows the synergistic defluorination during degradation of other PFAS and the PFAS constituents in aqueous film forming foam (AFFF). We attribute the synergistic effect to an activated/cleaned electrode surface, improved mass transfer, and enhanced production of radicals.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ashkan Khoshyan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Al Amin
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Annette Nolan
- Ramboll Australia, The Junction, NSW 2291, Australia
| | | | | | - Junfeng Niu
- Suzhou institute of North China Electric Power University, Jiangsu 215000, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
6
|
Asadi Zeidabadi F, Banayan Esfahani E, McBeath ST, Dubrawski KL, Mohseni M. Electrochemical degradation of PFOA and its common alternatives: Assessment of key parameters, roles of active species, and transformation pathway. CHEMOSPHERE 2023; 315:137743. [PMID: 36608884 DOI: 10.1016/j.chemosphere.2023.137743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates an electrochemical approach for the treatment of water polluted with per- and poly-fluoroalkyl substances (PFAS), looking at the impact of different variables, contributions from generated radicals, and degradability of different structures of PFAS. Results obtained from a central composite design (CCD) showed the importance of mass transfer, related to the stirring speed, and the amount of charge passed through the electrodes, related to the current density on decomposition rate of PFOA. The CCD informed optimized operating conditions which we then used to study the impact of solution conditions. Acidic condition, high temperature, and low initial concentration of PFOA accelerated the degradation kinetic, while DO had a negligible effect. The impact of electrolyte concentration depended on the initial concentration of PFOA. At low initial PFOA dosage (0.2 mg L-1), the rate constant increased considerably from 0.079 ± 0.001 to 0.259 ± 0.019 min-1 when sulfate increased from 0.1% to 10%, likely due to the production of SO4•-. However, at higher initial PFOA dosage (20 mg L-1), the rate constant decreased slightly from 0.019 ± 0.001 to 0.015 ± 0.000 min-1, possibly due to the occupation of active anode sites by excess amount of sulfate. SO4•- and •OH played important roles in decomposition and defluorination of PFOA, respectively. PFOA oxidation was initiated by one electron transfer to the anode or SO4•-, undergoing Kolbe decarboxylation where yielded perfluoroalkyl radical followed three reaction pathways with •OH, O2 and/or H2O. PFAS electrooxidation depended on the chemical structures where the decomposition rate constants (min-1) were in the order of 6:2 FTCA (0.031) > PFOA (0.019) > GenX (0.013) > PFBA (0.008). PFBA with a shorter chain length and GenX with -CF3 branching had slower decomposition than PFOA. While presence of C-H bonds makes 6:2 FTCA susceptible to the attack of •OH accelerating its decomposition kinetic. Conducting experiments in mixed solution of all studied PFAS and in natural water showed that the co-presence of PFAS and other water constituents (organic and inorganic matters) had adverse effects on PFAS decomposition efficiency.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01002, United States
| | - Kristian L Dubrawski
- Department of Civil Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
7
|
Veciana M, Bräunig J, Farhat A, Pype ML, Freguia S, Carvalho G, Keller J, Ledezma P. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128886. [PMID: 35436757 DOI: 10.1016/j.jhazmat.2022.128886] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.
Collapse
Affiliation(s)
- Mersabel Veciana
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane QLD 4102, Australia
| | - Ali Farhat
- GHD Pty Ltd, Brisbane QLD 4000, Australia
| | - Marie-Laure Pype
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürg Keller
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Pablo Ledezma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
8
|
Hwang JH, Li Sip YY, Kim KT, Han G, Rodriguez KL, Fox DW, Afrin S, Burnstine-Townley A, Zhai L, Lee WH. Nanoparticle-embedded hydrogel synthesized electrodes for electrochemical oxidation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). CHEMOSPHERE 2022; 296:134001. [PMID: 35181416 DOI: 10.1016/j.chemosphere.2022.134001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this study, sliver (Ag) and gold (Au) nanoparticles (NPs) were embedded on poly (acrylic acid) (PAA)/poly (allylamine) hydrochloride (PAH) hydrogel fibers for improved electrochemical oxidation (EO) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. The NPs-loaded PAA/PAHs shows the better charge transport compared to the ceramic nanofiber membranes (CNM) electrodes. At 10 mA cm-2 of current density, the Ag-PAA/PAH electrodes showed a faster removal of PFAS compared to the Ag-CNM electrode probably due to large surface area-volume ratio and high porosity from the hydrogel. Among NPs-loaded PAA/PAH electrodes, the Ag/Au-PAA/PAH electrodes showed the highest removal of PFOA (72%) and PFOS (91%) in 2 h with the maximum removal rate of PFOA (0.0046 min-1) and PFOS (0.0093 min-1). The rapid PFOS removal is possibly due to the high activity of electron transfer with a higher redox potential of SO4•- than •OH. The highly stable F- generation was obtained from each electrode during reproducibility (n = 3). The net energy consumption from Ag/Au-PAA/PAH electrode was 164.9 kWh m-3 for 72% PFOA removal and 90 kWh m-3 for 91% PFOS removal, respectively. The developed Au-PAA/PAH electrodes were applied to lake water samples and showed acceptable PFOS removal (65%) with relative standard deviations (RSD) of 10.2% (n = 3) at 10 mA cm-2 of current density. Overall, the NP-embedded hydrogel nanofibers were proven to be a promising sustainable catalyst for the electrochemical PFAS oxidation in water.
Collapse
Affiliation(s)
- Jae-Hoon Hwang
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Yuen Yee Li Sip
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 18323, South Korea
| | - Gaehee Han
- Water Quality Research Center, Waterworks Headquarters of Daegu Metropolitan City, Daegu, 42423, South Korea
| | - Kelsey L Rodriguez
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - David W Fox
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Sajia Afrin
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Alex Burnstine-Townley
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Lei Zhai
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
9
|
Adsorption of perfluorooctanoic acid from water by pH-modulated Brönsted acid and base sites in mesoporous hafnium oxide ceramics. iScience 2022; 25:104138. [PMID: 35402881 PMCID: PMC8987376 DOI: 10.1016/j.isci.2022.104138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are increasingly appearing in drinking water sources globally. Our work focuses specifically on the adsorption of the legacy perfluorooctanoic acid (PFOA) using mesoporous hafnium oxide (MHO) ceramic synthesized via a sol-gel process. Experiments were performed at varying pH to determine the effect of surface charge on adsorption capacity of PFOA by MHO, and to postulate adsorption behavior. At pH 2.3, the adsorption capacity of PFOA on MHO was 20.9 mg/g, whereas at a higher pH of 6.3, it was much lower at 9.2 mg/g. This was due to increased coulombic attractions at lower pH between the positively charged conjugate acid active sites on MHO surface and negatively charged deprotonated PFOA anion in solution. After adsorption, the solid MHO was regenerated via calcination, reducing the amount of toxic solid waste to be disposed since the adsorbent is regenerated, and the PFOA is completely removed. The adsorption capacity of PFOA by MHO was determined to be 20.9 mg/g at pH 2.3 As pH increased, the adsorption capacity of MHO decreased due to Coulombic repulsions MHO could be regenerated via calcination to limit the amount of toxic waste produced
Collapse
|
10
|
Yang JS, Lai WWP, Lin AYC. New insight into PFOS transformation pathways and the associated competitive inhibition with other perfluoroalkyl acids via photoelectrochemical processes using GOTiO 2 film photoelectrodes. WATER RESEARCH 2021; 207:117805. [PMID: 34736002 DOI: 10.1016/j.watres.2021.117805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The global distribution and environmental persistence of perfluoroalkyl acids (PFAAs) has been considered a critical environmental concern. In this work, we successfully fabricated a graphene oxide-titanium dioxide (GOTiO2) photoelectrode for perfluorooctane sulfonate (PFOS) degradation in a photoelectrochemical (PEC) system. The results reveal that a 5 wt.% GOTiO2 anode possesses the optimal PEC performance, with a band gap (Eg) of 2.42 eV, specific surface area (SBET) of 72.6 m2 g-1 and specific capacitance (Cs) of 4.63 mF cm-2. In the PEC system, PFOS can be efficiently removed within 4 h of reaction time, with a pseudo-first-order rate constant of 0.0124 min-1, under the optimized conditions of current density = 20 mA cm-2, electrode distance = 5 mm, solution pH = 5.64, [PFOS]0= 0.5 µM and NaClO4 electrolyte concentration = 50 mM. The electron transfer pathway, hydroxyl radicals and superoxide radicals are all responsible for PFOS decomposition/transformation. New degradation pathways were identified; a total of 25 PFOS byproducts are reported in this work; and perfluoroalkane sulfonates (PFSAs), perfluorinated aldehydes (PFALs) and hydrofluorocarbons (HFCs) were identified for the first time. PFOS degradation involves the desulfonation pathway as the first step, followed by oxidation and subsequent defluorination, decarboxylation, decarbonylation, sulfonation, defluorination and hydroxylation. The results from this work also show that the reactivity of PFAAs is related to their carbon chain length, with shorter-chain PFAAs exhibiting a lower degradation rate. In a PFAA mixture, a decline in the degradation rate was observed for the shorter-chain-length PFAAs, suggesting stronger competitive inhibition and indicating stronger environmental recalcitrance during the treatment process. Novelty statement: Although many efforts have been made to identify perfluorooctane sulfonate (PFOS) degradation byproducts, previous studies were only able to identify byproducts that are related to perfluorinated carboxylic acids (PFCAs). This is the first study to elucidate the new PFOS degradation pathway; furthermore, this is the first report to identify byproducts containing sulfonate groups (perfluoroalkane sulfonates, PFSAs), aldehyde groups (perfluorinated aldehydes, PFALs), and hydrofluorocarbons (HFCs). This study further systematically explores how perfluoroalkyl acid (PFAA) degradation may be affected in the mixture system: shorter-chain-length PFAAs suffer stronger competitive inhibition in the photoelectrochemical (PEC) system. By utilizing the graphene oxide-titanium dioxide (GOTiO2) photoelectrode fabricated in this work, PFOS can be successfully decomposed during the PEC process for the first time.
Collapse
Affiliation(s)
- Jheng-Sian Yang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Webber Wei-Po Lai
- Department of Environmental Science and Engineering, Tunghai University, Taichung 407, Taiwan, ROC
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan, ROC.
| |
Collapse
|
11
|
Deng Y, Liang Z, Lu X, Chen D, Li Z, Wang F. The degradation mechanisms of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) by different chemical methods: A critical review. CHEMOSPHERE 2021; 283:131168. [PMID: 34182635 DOI: 10.1016/j.chemosphere.2021.131168] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of artificial compounds comprised of a perfluoroalkyl main chain and a terminal functional group. With them being applied in a wide range of applications, PFASs have drawn increasing regulatory attention and research interests on their reductions and treatments due to their harmful effects on environment and human beings. Among numerous studies, chemical treatments (e.g., photochemical, electrochemical, and thermal technologies) have been proved to be important methods to degradation PFASs. However, the pathways and mechanisms for the degradation of PFASs through these chemical methods still have not been well documented. This article therefore provides a comprehensive review on the degradation mechanisms of two important PFASs (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)) with photochemical, electrochemical and thermal methods. Different decomposition mechanisms of PFOA and PFOS are reviewed and discussed. Overall, the degradation pathways of PFASs are associated closely with their head groups and chain lengths, and H/F exchange and chain shortening were found to be predominant degradation mechanisms. The clear study on the degradation mechanisms of PFOA and PFOS should be very useful for the complete degradation or mineralization of PFASs in the future.
Collapse
Affiliation(s)
- Yun Deng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhihong Liang
- The Pearl River Water Resources Research Institute, Guangzhou, Guangdong, 510611, China
| | - Xingwen Lu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhe Li
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Li C, Wang Q, Tao Y, Dai L, Qin Y, Meng B. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114908. [PMID: 32540566 DOI: 10.1016/j.envpol.2020.114908] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Collapse
Affiliation(s)
- Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shijing Lin
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuming Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Qin
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Yang Y, Xia Y, Wei F, Teng G, Yao Y. Preparation and characterization of hydrophobic stearic acid-Yb-PbO2 anode and its application on the electrochemical degradation of naproxen sodium. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Yang JS, Lai WWP, Panchangam SC, Lin AYC. Photoelectrochemical degradation of perfluorooctanoic acid (PFOA) with GOP25/FTO anodes: Intermediates and reaction pathways. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122247. [PMID: 32062347 DOI: 10.1016/j.jhazmat.2020.122247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) have been widely studied due to their persistence, bioaccumulation and possible toxic effects. In this work, we investigated a photoelectrochemical (PEC) system consisting of a graphene oxide-titanium dioxide (GOP25) anode coated on fluorine-doped tin oxide (FTO) glass for removal of PFOA in an aquatic environment. The GOP25/FTO anode was fabricated and well characterized. Nearly complete decomposition of 0.5 mg/L PFOA was achieved after 4 h of PEC treatment with an initial pH of 5.3 and a current density of 16.7 mA cm-2. The presence of graphene oxide (GO) on the TiO2 anode could enhance its electrochemical performance, thereby leading to increased decomposition efficiency. A total of 18 PFOA transformation products, including short-chain perfluoroalkyl acids, are reported in this work, and 13 products were observed for the first time. Four possible routes of PFOA decomposition, namely, decarboxylation followed by oxidation, defluorination, hydroxylation and Cl atom substitution, were determined. The presence of chlorinated byproducts in the system indicated that reactive chlorine species contributed to PFOA degradation.
Collapse
Affiliation(s)
- Jheng-Sian Yang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Webber Wei-Po Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Sri Chandana Panchangam
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC; Annamacharya Institute of Technology and Sciences, Rajampeta, 516126, Kadapa, A.P., India.
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
15
|
Wang L, Lu J, Li L, Wang Y, Huang Q. Effects of chloride on electrochemical degradation of perfluorooctanesulfonate by Magnéli phase Ti 4O 7 and boron doped diamond anodes. WATER RESEARCH 2020; 170:115254. [PMID: 31739240 DOI: 10.1016/j.watres.2019.115254] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
This study examined the degradation of perfluorooctanesulfonate (PFOS) in an electrochemical system using Magnéli phase titanium suboxide (Ti4O7) as the anode. In particular, the influence of chloride on the treatment process was examined. Tests were also conducted with boron doped diamond (BDD) electrodes for comparison. Experimental data demonstrated that PFOS was effectively degraded by electrochemical oxidation on both BDD and Magnéli phase Ti4O7 anodes. It appeared that PFOS degradation occurred via direct electron transfer (DET) in combination with attack by hydroxyl radicals adsorbed on the anode surface (HO•ads) that were formed by anodic oxidation of water. The presence of Cl- inhibited the degradation of the PFOS on Ti4O7 electrode by suppressing the oxidation of water, but accelerated PFOS degradation on BDD electrode, where the oxidation of Cl- via DET occurred. Formation of chlorate and perchlorate was slower on Ti4O7 than on the BDD anode. The mechanisms governing the behavior of PFOS and chloride reactions on BDD and Ti4O7 anodes were explored by experiments in combination with density functional theory (DFT) computations.
Collapse
Affiliation(s)
- Lu Wang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA; Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lei Li
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Yaye Wang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
16
|
Barisci S, Suri R. Electrooxidation of short and long chain perfluorocarboxylic acids using boron doped diamond electrodes. CHEMOSPHERE 2020; 243:125349. [PMID: 31756655 DOI: 10.1016/j.chemosphere.2019.125349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
This study investigates electrooxidation of short (C3-C6) and long (C7-C-18) chain perfluorocarboxylic acids (PFCAs) including perfluorooctane sulfonate (PFOA) using Si/BDD electrode. The effect of operational parameters (supporting electrolyte type, applied current density, and initial pH) were explored for PFOA removal. At the optimized conditions, 74% TOC removal and 37% defluorination ratio were gained for 10 mg L-1 of PFOA solution which evidences that the shorter chain PFCAs were formed. The PFOA degradation pathway followed one direct electron transfer from PFOA molecule to anode surface. Then two different degradation pathways were proposed. The first proposed degradation mechanism involved the reaction of perfluoroheptyl radical and hydroxyl radical, the release of HF and hydrolysis. The second mechanism involved the reaction between perfluoroheptyl radical and O2, formation of C7F15O and perfluorohexyl radical with releasing COF2. The removal of short- (C3-C6) and long-chain PFCAs (C7-C18) was also characterized. More than 95% of removal efficiency was gained for all long-chain PFCAs, excluding C7. The removal ratios of short-chain PFCAs (C3-C6) were 39%, 41%, 66% and 70% for C3, C4, C5 and C6, respectively. Contrary to long-chain PFCAs, chain-length dependence for short-chain PFCAs were observed. Defluorination ratio of short-chain PFCAs was only 45% signifying that defluorination partially occurred. Water matrix did not significantly affect the degradation of short-chain PFCAs in deionized water (DI), river water and secondary effluent of a wastewater treatment plant (WWTP). In contrast, defluorination ratio of long-chain PFCAs was noticeably affected by water matrix with the order of DI water > WWTP effluent > river water.
Collapse
Affiliation(s)
- Sibel Barisci
- Temple University, Civil and Environmental Engineering Department, NSF Water and Environmental Technology (WET) Center, 1947 N 12thStreet, Philadelphia, PA, 19122, USA.
| | - Rominder Suri
- Temple University, Civil and Environmental Engineering Department, NSF Water and Environmental Technology (WET) Center, 1947 N 12thStreet, Philadelphia, PA, 19122, USA.
| |
Collapse
|
17
|
Liu B, Ren B, Xia Y, Yang Y, Yao Y. Electrochemical degradation of safranine T in aqueous solution by Ti/PbO2 electrodes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electrochemical degradation of safranine T (ST) in aqueous solution was studied. The effects of current density, initial concentration of ST, initial pH values, and Na2SO4 concentration on electrocatalytic degradation of ST in the aqueous solution by Ti/PbO2 electrode were analyzed. The experimental results showed that the electrochemical oxidization reaction of ST fitted a pseudo first order kinetics model. By using the Ti/ PbO2 electrode as the anode, 99.96% of ST can be eliminated at 120 min. It means that the electrochemical degradation of ST in aqueous solution by the Ti/PbO2 electrode was very effective. The optimal reaction conditions were as follows: current density, 40 mA cm−2; initial ST concentration, 100 mg L−1; Na2SO4 concentration, 0.20 mol L−1; initial pH, 6. It can be known from the test of UV–vis and HPLC in the reaction process that the intermediates will be generated, and the possible intermediate structure was studied by HPLC–MS test. However, with the progress of degradation reaction, the intermediates will eventually be oxidized into CO2 and H2O. Cyclic voltammetry and fluorescence experiments proved that ST was indirectly oxidized through the generation of hydroxyl radicals. Under the optimal reaction conditions, the energy required to completely remove ST was 17.92 kWh/m3.
Collapse
Affiliation(s)
- Baichen Liu
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Bingli Ren
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yun Xia
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yang Yang
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yingwu Yao
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| |
Collapse
|
18
|
Yi L, Peng Q, Liu D, Zhou L, Tang C, Zhou Y, Chai L. Enhanced degradation of perfluorooctanoic acid by a genome shuffling-modified Pseudomonas parafulva YAB-1. ENVIRONMENTAL TECHNOLOGY 2019; 40:3153-3161. [PMID: 29671379 DOI: 10.1080/09593330.2018.1466918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Perfluorooctanoic acid (PFOA) as an emerging persistent organic pollutant is hard to be degraded by conventional methods because of its stable physical and chemical properties. Microbial transformation is an attractive remediation approach to prevent and clean up PFOA contamination. To date, several strains of wild microbes have been reported to have limited capacity to degrade PFOA, selection of superior strains degrading PFOA become urgently necessary. Here, we report the application of genome shuffling to improve the PFOA-degrading bacterium Pseudomonas Parafulva YAB-1. The initial mutant populations of strain YAB1 were generated by nitrosoguanidine and ultraviolet irradiation mutagenesis respectively, resulting in mutants YM-9 and YM-19 with slightly improved PFOA-degrading ability. YM-9 and YM-19 were used as the starting strains for three rounds of recursive protoplast fusion. The positive mutants were screened on inorganic salt medium plates containing different concentrations of PFOA and selected based on their PFOA degradability in shake-flask fermentation test. The best performing recombinant F3-52 was isolated after three rounds of genome shuffling. In batch fermentation, the PFOA degradation rate of mutant F3-52 was up to 58.6%, which was 1.8-fold higher than that of the parent strain YAB1, and 1.6-fold higher than the initial mutants YM-9 and YM-19. Pass-generation test indicated that the heredity character of F3-52 was stable. The results demonstrated that genome shuffling was an efficient method for improving PFOA degradation of Pseudomonas Parafulva YAB1. The bred mutant F3-52 with 58.6% PFOA-degrading rate could be used for the environmental control of PFOA pollutant.
Collapse
Affiliation(s)
- Langbo Yi
- School of Metallurgy and Environment, Central South University , Changsha , People's Republic of China
- College of Biology and Environmental Sciences, Jishou University , Jishou , People's Republic of China
| | - Qingzhong Peng
- College of Biology and Environmental Sciences, Jishou University , Jishou , People's Republic of China
| | - Deming Liu
- Analysis and Test Center, Hunan Agricultural University , Changsha , People's Republic of China
| | - Lulu Zhou
- College of Biology and Environmental Sciences, Jishou University , Jishou , People's Republic of China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University , Changsha , People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University , Changsha , People's Republic of China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University , Changsha , People's Republic of China
| |
Collapse
|
19
|
Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Xu M, Mao Y, Song W, OuYang X, Hu Y, Wei Y, Zhu C, Fang W, Shao B, Lu R, Wang F. Preparation and characterization of Fe-Ce co-doped Ti/TiO2 NTs/PbO2 nanocomposite electrodes for efficient electrocatalytic degradation of organic pollutants. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Liang S, Pierce R"D, Lin H, Chiang SYD, Huang Q"J. Electrochemical oxidation of PFOA and PFOS in concentrated waste streams. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/rem.21554] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Randall "David" Pierce
- College of Agricultural and Environmental Sciences; Department of Crop and Soil Sciences; University of Georgia; Griffin GA
| | - Hui Lin
- State Key Laboratory of Water Environment Simulation; School of Environment; Beijing China
| | | | - Qingguo "Jack" Huang
- College of Agricultural and Environmental Sciences; Department of Crop and Soil Sciences; University of Georgia; Griffin GA
| |
Collapse
|
22
|
He Y, Wang X, Huang W, Chen R, Zhang W, Li H, Lin H. Hydrophobic networked PbO 2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics. CHEMOSPHERE 2018; 193:89-99. [PMID: 29127839 DOI: 10.1016/j.chemosphere.2017.10.144] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
A hydrophobic networked PbO2 electrode was deposited on mesh titanium substrate and utilized for the electrochemical elimination towards paracetamol drug. Three dimensional growth mechanism of PbO2 layer provided more loading capacity of active materials and network structure greatly reduced the mass transfer for the electrochemical degradation. The active electrochemical surface area based on voltammetric charge quantity of networked PbO2 electrode is about 2.1 times for traditional PbO2 electrode while lower charge transfer resistance (6.78 Ω cm2) could be achieved on networked PbO2 electrode. The electrochemical incineration kinetics of paracetamol drug followed a pseudo first-order behavior and the corresponding rate constant were 0.354, 0.658 and 0.880 h-1 for traditional, networked PbO2 and boron doped diamond electrode. Higher electrochemical elimination kinetics could be achieved on networked PbO2 electrode and the performance can be equal to boron doped diamond electrode in result. Based on the quantification of reactive oxidants (hydroxyl radicals), the utilization rate of hydroxyl radicals could reach as high as 90% on networked PbO2 electrode. The enhancement of excellent electrochemical oxidation capacity towards paracetamol drug was related to the properties of higher loading capacity, enhanced mass transfer and hydrophobic surface. The possible degradation mechanism and pathway of paracetamol on networked PbO2 electrode were proposed in details accordingly based on the intermediate products.
Collapse
Affiliation(s)
- Yapeng He
- College of Chemistry, Jilin University, Changchun 130012, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xue Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Weimin Huang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Rongling Chen
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenli Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongdong Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Haibo Lin
- College of Chemistry, Jilin University, Changchun 130012, China; Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515061, China.
| |
Collapse
|
23
|
|
24
|
Wu W, Huang ZH, Hu ZT, He C, Lim TT. High performance duplex-structured SnO2-Sb-CNT composite anode for bisphenol A removal. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Zhao HZ, Wang L, Chang YY, Xu Y. High-efficiency removal of perfluorooctanoic acid from water by covalently bound hybrid coagulants (CBHyC) bearing a hydrophobic quaternary ammonium group. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.11.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|