1
|
Kamp M, Soligno G, Hagemans F, Peng B, Imhof A, van Roij R, van Blaaderen A. Regiospecific Nucleation and Growth of Silane Coupling Agent Droplets onto Colloidal Particles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:19989-19998. [PMID: 29057028 PMCID: PMC5645761 DOI: 10.1021/acs.jpcc.7b04188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Nucleation-and-growth processes are used extensively in the synthesis of spherical colloids, and more recently regiospecific nucleation-and-growth processes have been exploited to prepare more complex colloids such as patchy particles. We demonstrate that surface geometry alone can be made to play the dominant role in determining the final particle geometry in such syntheses, meaning that intricate chemical surface patternings are not required. We present a synthesis method for "lollipop"-shaped colloidal heterodimers (patchy particles), combining a recently published nucleation-and-growth technique with our recent findings that particle geometry influences the locus of droplet adsorption onto anisotropic template particles. Specifically, 3-methacryloxypropyl trimethoxysilane (MPTMS) is nucleated and grown onto bullet-shaped and nail-shaped colloids. The shape of the template particle can be chosen such that the MPTMS adsorbs regiospecifically onto the flat ends. In particular, we find that particles with a wider base increase the range of droplet volumes for which the minimum in the free energy of adsorption is located at the flat end of the particle compared with bullet-shaped particles of the same aspect ratio. We put forward an extensive analysis of the synthesis mechanism and experimentally determine the physical properties of the heterodimers, supported by theoretical simulations. Here we numerically optimize, for the first time, the shape of finite-sized droplets as a function of their position on the rod-like silica particle surface. We expect that our findings will give an impulse to complex particle creation by regiospecific nucleation and growth.
Collapse
Affiliation(s)
- Marlous Kamp
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Giuseppe Soligno
- Institute
for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Fabian Hagemans
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Bo Peng
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Arnout Imhof
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - René van Roij
- Institute
for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Alfons van Blaaderen
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|