1
|
Kheirollahi A, Sadeghi S, Orandi S, Moayedi K, Khajeh K, Khoobi M, Golestani A. Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme Microb Technol 2024; 172:110348. [PMID: 37898093 DOI: 10.1016/j.enzmictec.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The chondroitinases (Chase) are bacterial lyases that specifically digest chondroitin sulfate and/or dermatan sulfate glycosaminoglycans via a β-elimination reaction and generate unsaturated disaccharides. In recent decades, these enzymes have attracted the attention of many researchers due to their potential applications in various aspects of medicine from the treatment of spinal cord injury to use as an analytical tool. In spite of this diverse spectrum, the application of Chase is faced with several limitations and challenges such as thermal instability and lack of a suitable delivery system. In the current review, we address potential therapeutic applications of Chase with emphasis on the challenges ahead. Then, we summarize the latest achievements to overcome the problems by considering the studies carried out in the field of enzyme engineering, drug delivery, and combination-based therapy.
Collapse
Affiliation(s)
- Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hassanli A, Daneshjou S, Dabirmanesh B, Khajeh K. Improvement of thermal-stability of chondroitinase ABCI immobilized on graphene oxide for the repair of spinal cord injury. Sci Rep 2023; 13:18220. [PMID: 37880390 PMCID: PMC10600109 DOI: 10.1038/s41598-023-45555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal cord injury healing has been shown to be aided by chondroitinase ABC I (cABCI) treatment. The transport of cABCI to target tissues is complicated by the enzyme's thermal instability; however, cABCI may be immobilized on nanosheets to boost stability and improve delivery efficiency. This investigation's goal was to assess the immobilization of cABC I on graphene oxide (GO). for this purpose, GO was produced from graphene using a modified version of Hummer's process. the immobilization of cABC I on GO was examined using SEM, XRD, and FTIR. The enzymatic activity of cABC I was evaluated in relation to substrate concentration. The enzyme was then surface-adsorption immobilized on GO, and its thermal stability was examined. As compared to the free enzyme, the results showed that the immobilized enzyme had a greater Km and a lower Vmax value. The stability of the enzyme was greatly improved by immobilization at 20, 4, 25, and 37 °C. For example, at 37 °C, the free enzyme retained 5% of its activity after 100 min, while the immobilized one retained 30% of its initial activity. The results showed, As a suitable surface for immobilizing cABC I, GO nano sheets boost the enzyme's stability, improving its capability to support axonal regeneration after CNC damage and guard against fast degradation.
Collapse
Affiliation(s)
- Atefeh Hassanli
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Sara Daneshjou
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Aqel H, Sannan N, Foudah R, Al-Hunaiti A. Enzyme Production and Inhibitory Potential of Pseudomonas aeruginosa: Contrasting Clinical and Environmental Isolates. Antibiotics (Basel) 2023; 12:1354. [PMID: 37760651 PMCID: PMC10525495 DOI: 10.3390/antibiotics12091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: This study summarizes the findings of two studies investigating the inhibitory effects of Pseudomonas aeruginosa strains from clinical and environmental sources against gram-positive and gram-negative bacteria and fungi. The studies also analyzed the correlation between enzyme production and inhibitory effects to gain insights into the antimicrobial capabilities of P. aeruginosa strains; (2) Methods: Both studies employed similar methodologies, including the use of disk diffusion and well diffusion methods to assess the inhibitory effects of P. aeruginosa strains against target pathogens. Enzyme production was analyzed through various biochemical assays to determine the diversity and frequencies of enzyme secretion among the strains; (3) Results: A comparative analysis of enzyme production in P. aeruginosa strains from clinical sources revealed significant variations in enzyme production, with hemolysin and protease being the most commonly produced enzymes. Gelatinase production showed lower rates, whereas chondroitinase and hyaluronidase were absent or occurred less frequently. In contrast, a comparative analysis of enzyme production in environmental isolates showed different patterns, indicating adaptation to environmental conditions. Pyocyanin production was absent in all environmental isolates. The inhibitory effects against gram-positive and gram-negative bacteria varied among different P. aeruginosa strains, with strain-specific variations observed. Limited inhibitory effects were observed against fungi, primarily toward gram-positive bacteria; (4) Conclusions: The findings highlight the strain-specific nature of inhibitory effects and enzyme production in P. aeruginosa strains. The correlation between enzyme production and inhibitory effects against gram-positive bacteria suggest a potential role of specific enzymes, such as hemolysin and protease, in the antimicrobial activity. The complexity of the relationship between enzyme production and the inhibition of different pathogens requires further investigation. The results emphasize the potential of P. aeruginosa strains as sources for antimicrobial strategies, particularly against gram-positive bacteria. Future research should focus on understanding the mechanisms underlying these inhibitory effects and exploring their therapeutic applications.
Collapse
Affiliation(s)
- Hazem Aqel
- Basic Medical Sciences Department, College of Medicine, Al-Balqa’ Applied University, Salt 19117, Jordan
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah 22384, Saudi Arabia;
| | - Naif Sannan
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah 22384, Saudi Arabia;
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| | - Ramy Foudah
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
| | - Afnan Al-Hunaiti
- Chemistry Department, College of Science, Jordan University, Amman 11942, Jordan;
| |
Collapse
|
4
|
Enzyme Kinetics Features of the Representative Engineered Recombinants of Chondroitinase ABC I. Protein J 2023; 42:55-63. [PMID: 36715784 DOI: 10.1007/s10930-023-10093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Chondroitinase ABC I (cABC I) from Proteus vulgaris is an important enzyme in medicinal biotechnology due to its ability to help axon regeneration after spinal cord injury. Its practical application involves solving several problems at the molecular and cellular levels. Structurally, most residues at the C-terminal domain of cABC I are arranged as organized strands, and only a small fraction of residues have helical conformation. The structural and functional features of modified residues on two specific helix fragments have previously been reported. The single mutant M889K has been combined with L679S and L679D mutants to make enzyme variants containing simultaneously modified helix. Here, the pH stability and temperature-based analysis of the transition state structure for the catalysis reaction were investigated. We found that double mutant L679D/M889K is the better choice to use in physiological conditions due to its higher pH stability at physiological pH as well as its different optimum temperature as compared with the (wild-type) WT protein. According to Arrhenius's analysis, the values of the Gibbs free energy of the transition state (∆G#) are not changed upon mutation. However, the relative contribution and absolute values of the enthalpy and entropy change to the total value of ∆G#, varied between the WT and mutants.
Collapse
|
5
|
Mou M, Hu Q, Li H, Long L, Li Z, Du X, Jiang Z, Ni H, Zhu Y. Characterization of a Thermostable and Surfactant-Tolerant Chondroitinase B from a Marine Bacterium Microbulbifer sp. ALW1. Int J Mol Sci 2022; 23:5008. [PMID: 35563396 PMCID: PMC9103228 DOI: 10.3390/ijms23095008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Chondroitinase plays an important role in structural and functional studies of chondroitin sulfate (CS). In this study, a new member of chondroitinase B of PL6 family, namely ChSase B6, was cloned from marine bacterium Microbulbifer sp. ALW1 and subjected to enzymatic and structural characterization. The recombinant ChSase B6 showed optimum activity at 40 °C and pH 8.0, with enzyme kinetic parameters of Km and Vmax against chondroitin sulfate B (CSB) to be 7.85 µg/mL and 1.21 U/mg, respectively. ChSase B6 demonstrated thermostability under 60 °C for 2 h with about 50% residual activity and good pH stability under 4.0-10.0 for 1 h with above 60% residual activity. In addition, ChSase B6 displayed excellent stability against the surfactants including Tween-20, Tween-80, Trion X-100, and CTAB. The degradation products of ChSase B6-treated CSB exhibited improved antioxidant ability as a hydroxyl radical scavenger. Structural analysis and site-directed mutagenesis suggested that the conserved residues Lys248 and Arg269 were important for the activity of ChSase B6. Characterization, structure, and molecular dynamics simulation of ChSase B6 provided a guide for further tailoring for its industrial application for chondroitin sulfate bioresource development.
Collapse
Affiliation(s)
- Mingjing Mou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Qingsong Hu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Liufei Long
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| |
Collapse
|
6
|
Fan XM, Huang JY, Ling XM, Wei W, Su WB, Zhang YW. A Highly Active Chondroitin Sulfate Lyase ABC for Enzymatic Depolymerization of Chondroitin Sulfate. Polymers (Basel) 2022; 14:polym14091770. [PMID: 35566938 PMCID: PMC9100776 DOI: 10.3390/polym14091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
Enzymatic preparation of low-molecular-weight chondroitin sulfate (LMWCS) has received increasing attention. In this work, a chondroitin sulfate lyase ABC (Chon-ABC) was successfully cloned, expressed, and characterized. The Km and Vmax of the Chon-ABC were 0.54 mM and 541.3 U mg−1, respectively. The maximal activity was assayed as 500.4 U mg−1 at 37 °C in pH 8.0 phosphate buffer saline. The half-lives of the Chon-ABC were 133 d and 127 min at 4 °C and 37 °C, respectively. Enzymatic preparation of LMWCS was performed at room temperature for 30 min. The changes between the substrate and product were analyzed with mass spectrometry (MS), high-performance liquid chromatography (HPLC), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR). Overall, the Chon-ABC from Bacteroides thetaiotaomicron is competitive in large-scale enzymatic preparation of LMWCS for its high activity, stability, and substrate specificity.
Collapse
|
7
|
Wang H, Zhang L, Wang Y, Li J, Du G, Kang Z. Engineering a thermostable chondroitinase for production of specifically distributed low-molecular-weight chondroitin sulfate. Biotechnol J 2021; 16:e2000321. [PMID: 33350041 DOI: 10.1002/biot.202000321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
Chondroitinase ABC I (csABC I) has attracted intensive attention because of its great potential in heparin refining and the enzymatic preparation of low-molecular-weight chondroitin sulfate (LMW-CS). However, low thermal resistance (<30℃) restricts its applications. Herein, structure-guided and sequence-assisted combinatorial engineering approaches were applied to improve the thermal resistance of Proteus vulgaris csABC I. By integrating the deletion of the flexible fragment R166-L170 at the N-terminal domain and the mutation of E694P at the C-terminal domain, variant NΔ5/E694P exhibited 247-fold improvement of its half-life at 37℃ and a 2.3-fold increase in the specific activity. Through batch fermentation in a 3-L fermenter, the expression of variant NΔ5/E694P in an Escherichia coli host reached 1.7 g L-1 with the activity of 1.0 × 105 U L-1 . Finally, the enzymatic approach for the preparation of LMW-CS was established. By modulating enzyme concentration and controlling depolymerization time, specifically distributed LMW-CS (7000, 3400, and 1900 Da) with low polydispersity was produced, demonstrating the applicability of these processes for the industrial production of LMW-CS in a more environmentally friendly way.
Collapse
Affiliation(s)
- Hao Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Lin Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Hettiaratchi MH, O’Meara MJ, O’Meara TR, Pickering AJ, Letko-Khait N, Shoichet MS. Reengineering biocatalysts: Computational redesign of chondroitinase ABC improves efficacy and stability. SCIENCE ADVANCES 2020; 6:eabc6378. [PMID: 32875119 PMCID: PMC7438101 DOI: 10.1126/sciadv.abc6378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/08/2020] [Indexed: 05/24/2023]
Abstract
Maintaining biocatalyst stability and activity is a critical challenge. Chondroitinase ABC (ChABC) has shown promise in central nervous system (CNS) regeneration, yet its therapeutic utility is severely limited by instability. We computationally reengineered ChABC by introducing 37, 55, and 92 amino acid changes using consensus design and forcefield-based optimization. All mutants were more stable than wild-type ChABC with increased aggregation temperatures between 4° and 8°C. Only ChABC with 37 mutations (ChABC-37) was more active and had a 6.5 times greater half-life than wild-type ChABC, increasing to 106 hours (4.4 days) from only 16.8 hours. ChABC-37, expressed as a fusion protein with Src homology 3 (ChABC-37-SH3), was active for 7 days when released from a hydrogel modified with SH3-binding peptides. This study demonstrates the broad opportunity to improve biocatalysts through computational engineering and sets the stage for future testing of this substantially improved protein in the treatment of debilitating CNS injuries.
Collapse
Affiliation(s)
- Marian H. Hettiaratchi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave. #2017, Ann Arbor, MI 48109, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109 USA
| | - Andrew J. Pickering
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Nitzan Letko-Khait
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
Efficient expression of chondroitinase ABC I for specific disaccharides detection of chondroitin sulfate. Int J Biol Macromol 2020; 143:41-48. [DOI: 10.1016/j.ijbiomac.2019.11.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
|
10
|
Omidi-Ardali H, Aminian M, Golestani A, Shahaboddin ME, Maleki M. N∆89 and C∆274 Truncated Enzymes of Chondroitinase ABC I Regain More Imperturbable Microenvironments Around Structural Components in Comparison to their Wild Type. Protein J 2019; 38:151-159. [DOI: 10.1007/s10930-019-09821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Li Y, Zhou Z, Chen Z. High-level production of ChSase ABC I by co-expressing molecular chaperones in Escherichia coli. Int J Biol Macromol 2018; 119:779-784. [DOI: 10.1016/j.ijbiomac.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
|
12
|
Raspa A, Bolla E, Cuscona C, Gelain F. Feasible stabilization of chondroitinase abc enables reduced astrogliosis in a chronic model of spinal cord injury. CNS Neurosci Ther 2018; 25:86-100. [PMID: 29855151 DOI: 10.1111/cns.12984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/30/2022] Open
Abstract
AIMS Usually, spinal cord injury (SCI) develops into a glial scar containing extracellular matrix molecules including chondroitin sulfate proteoglycans (CSPGs). Chondroitinase ABC (ChABC), from Proteus vulgaris degrading the glycosaminoglycan (GAG) side chains of CSPGs, offers the opportunity to improve the final outcome of SCI. However, ChABC usage is limited by its thermal instability, requiring protein structure modifications, consecutive injections at the lesion site, or implantation of infusion pumps. METHODS Aiming at more feasible strategy to preserve ChABC catalytic activity, we assessed various stabilizing agents in different solutions and demonstrated, via a spectrophotometric protocol, that the 2.5 mol/L Sucrose solution best stabilized ChABC as far as 14 days in vitro. RESULTS ChABC activity was improved in both stabilizing and diluted solutions at +37°C, that is, mimicking their usage in vivo. We also verified the safety of the proposed aqueous sucrose solution in terms of viability/cytotoxicity of mouse neural stem cells (NSCs) in both proliferating and differentiating conditions in vitro. Furthermore, we showed that a single intraspinal treatment with ChABC and sucrose reduced reactive gliosis at the injury site in chronic contusive SCI in rats and slightly enhanced their locomotor recovery. CONCLUSION Usage of aqueous sucrose solutions may be a feasible strategy, in combination with rehabilitation, to ameliorate ChABC-based treatments to promote the regeneration of central nervous system injuries.
Collapse
Affiliation(s)
- Andrea Raspa
- Opera di San Pio da Pietrelcina, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Edoardo Bolla
- Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| | - Claudia Cuscona
- Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| | - Fabrizio Gelain
- Opera di San Pio da Pietrelcina, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.,Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| |
Collapse
|
13
|
Maleki M, Khajeh K, Amanlou M, Golestani A. Role of His-His interaction in Ser 474-His 475-Tyr 476 sequence of chondroitinase ABC I in the enzyme activity and stability. Int J Biol Macromol 2017; 109:941-949. [PMID: 29146558 DOI: 10.1016/j.ijbiomac.2017.11.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/11/2022]
Abstract
Despite clinical importance of chondroitinase ABC I, its application has been limited due to thermal instability as reported in the literature. There are various approaches to improve thermal stability of enzymes, among them, His-His interactions are believed generally as an effective means. In the present study and for preparing a His-His interaction, various mutations in the sequence of Ser474-His475-Tyr476 at catalytic domain of the enzyme were performed using site directed mutagenesis method. The effect of these mutations on activity, stability and structural features of cABC I was assessed. The study showed that establishment of His475-His476 pair in cABC I, did not improve thermal stability of the enzyme and inactivated it. The study also revealed the existence a hydrogen bond network in the central domain of the enzyme with a specific role for tyrosine 476. In this network, replacement of His475 with Ala and Try476 with His and Ala, deactivated and destabilized the enzyme; confirming their importance in the enzyme catalysis and stability. Also, it was found that Tyr476 has some important role in substrate binding, an issue which should be more investigated.
Collapse
Affiliation(s)
- Monireh Maleki
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Massoud Amanlou
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Shahaboddin ME, Khajeh K, Maleki M, Golestani A. Improvement of activity and stability of Chondroitinase ABC I by introducing an aromatic cluster at the surface of protein. Enzyme Microb Technol 2017; 105:38-44. [DOI: 10.1016/j.enzmictec.2017.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/22/2017] [Accepted: 06/03/2017] [Indexed: 11/16/2022]
|
15
|
Chen Z, Shen X, Wang J, Wang J, Yuan Q, Yan Y. Rational engineering of p
-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26364] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhenya Chen
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; 15 Beisanhuan East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; 15 Beisanhuan East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Jian Wang
- College of Engineering; The University of Georgia; 615 Driftmier Engineering Center Athens 30602 Georgia
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; 15 Beisanhuan East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; 15 Beisanhuan East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Yajun Yan
- College of Engineering; The University of Georgia; 615 Driftmier Engineering Center Athens 30602 Georgia
| |
Collapse
|
16
|
Mrázková J, Malinovská L, Wimmerová M. Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL. Methods Mol Biol 2017; 1498:399-419. [PMID: 27709592 DOI: 10.1007/978-1-4939-6472-7_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-directed mutagenesis is a powerful technique which is used to understand the basis of interactions between proteins and their binding partners, as well as to modify these interactions. Methods of rational design that are based on detailed knowledge of the structure of a protein of interest are often used for preliminary investigations of the possible outcomes which can result from the practical application of site-directed mutagenesis. Also, random mutagenesis can be used in tandem with site-directed mutagenesis for an examination of amino acid "hotspots."Lectins are sugar-binding proteins which, among other functions, mediate the recognition of host cells by a pathogen and its adhesion to the host cell surface. Hence, lectins and their binding properties are studied and engineered using site-directed mutagenesis.In this chapter, we describe a site-directed mutagenesis method used for investigating the sugar binding pattern of the PA-IIL lectin from the pathogenic bacterium Pseudomonas aeruginosa. Moreover, procedures for the production and purification of PA-IIL mutants are described, and several basic methods for characterizing the mutants are discussed.
Collapse
Affiliation(s)
- Jana Mrázková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská, 611 37, Brno, Czech Republic
| | - Lenka Malinovská
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Michaela Wimmerová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic. .,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská, 611 37, Brno, Czech Republic. .,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
17
|
Improvement of expression level of polysaccharide lyases with new tag GAPDH in E. coli. J Biotechnol 2016; 236:159-65. [DOI: 10.1016/j.jbiotec.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 11/22/2022]
|
18
|
Wang S, Cheng G, Joshua C, He Z, Sun X, Li R, Liu L, Yuan Q. Furfural tolerance and detoxification mechanism in Candida tropicalis. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:250. [PMID: 27891177 PMCID: PMC5116146 DOI: 10.1186/s13068-016-0668-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/15/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Current biomass pretreatment by hydrothermal treatment (including acid hydrolysis, steam explosion, and high-temperature steaming) and ionic liquids generally generate inhibitors to the following fermentation process. Furfural is one of the typical inhibitors generated in hydrothermal treatment of biomass. Furfural could inhibit cell growth rate and decrease biofuel productivity of microbes. Candida tropicalis is a promising microbe for the production of biofuels and value-added chemicals using hemicellulose hydrolysate as carbon source. In this study, C. tropicalis showed a comparable ability of furfural tolerance during fermentation. We investigated the mechanism of C. tropicalis's robust tolerance to furfural and relevant metabolic responses to obtain more information for metabolic engineering of microbes for efficient lignocellulose fermentation. RESULTS Candida tropicalis showed comparable intrinsic tolerance to furfural and a fast rate of furfural detoxification. C. tropicalis's half maximal inhibitory concentration for furfural with xylose as the sole carbon source was 3.69 g/L, which was higher than that of most wild-type microbes reported in the literature to our knowledge. Even though furfural prolonged the lag phase of C. tropicalis, the final biomass in the groups treated with 1 g/L furfural was slightly greater than that in the control groups. By real-time PCR analysis, we found that the expression of ADH1 in C. tropicalis (ctADH1) was induced by furfural and repressed by ethanol after furfural depletion. The expression of ctADH1 could be regulated by both furfural and ethanol. After the disruption of gene ctADH1, we found that C. tropicalis's furfural tolerance was weakened. To further confirm the function of ctADH1 and enhance Escherichia coli's furfural tolerance, ctADH1 was overexpressed in E. coli BL21 (DE3). The rate of furfural degradation in E. coli BL21 (DE3) with pET-ADH1 (high-copy plasmid) and pCS-ADH1 (medium-copy plasmid) was increased by 1.59-fold and 1.28-fold, respectively. CONCLUSIONS Candida tropicalis was a robust strain with intrinsic tolerance to inhibitor furfural. The mechanism of furfural detoxification and metabolic responses were identified by multiple analyses. Alcohol dehydrogenase 1 was confirmed to be responsible for furfural detoxification. C. tropicalis showed a complex regulation system during furfural detoxification to minimize adverse effects caused by furfural. Furthermore, the mechanism we uncovered in this work was successfully applied to enhance E. coli's furfural tolerance by heterologous expression of ctADH1. The study provides deeper insights into strain modification for biofuel production by efficient lignocellulose fermentation.
Collapse
Affiliation(s)
- Shizeng Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, West Room 314, Science and Technology Building, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Gang Cheng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, West Room 314, Science and Technology Building, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Chijioke Joshua
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA 94608 USA
| | - Zijun He
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, West Room 314, Science and Technology Building, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, West Room 314, Science and Technology Building, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Ruimin Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, West Room 314, Science and Technology Building, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Lexuan Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, West Room 314, Science and Technology Building, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, West Room 314, Science and Technology Building, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| |
Collapse
|
19
|
Wang Y, Guo X, Wu B, Wei D, Tang M. Mechanistic and stereoselectivity study for the reaction of trifluoropyruvates with arylpropenes catalyzed by a cationic Lewis acid rhodium complex. RSC Adv 2015. [DOI: 10.1039/c5ra21074g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mechanism and stereoselectivity of a Lewis acid catalyzed carbonyl–ene reaction of trifluoropyruvates with arylpropenes have been investigated using a DFT method.
Collapse
Affiliation(s)
- Yang Wang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Xiaokang Guo
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Bohua Wu
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|