1
|
Synergistic effect of iron and copper in hydroxyapatite nanorods for Fenton-like oxidation of organic dye. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Xiong XB, Liu C, Ni XY, Liang CQ, Zeng XR. Polyvinyl Alcohol/Graphene Oxide Interlayer for Enhancing Adhesive Performance of HA Coating on C/C Composites Prepared by Hydrothermal Electrodeposition/Hydrothermal Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55710-55722. [PMID: 33263993 DOI: 10.1021/acsami.0c17649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydroxyapatite (HA) coatings directly deposited by hydrothermal electrochemical technology (HET) onto carbon/carbon (C/C) composites exhibited a catastrophic failure occurring at the interface of the HA and C/C. To overcome this problem, a polyvinyl alcohol (PVA)/graphene oxide (GO) interlayer (P/G interlayer) was applied on the (NH4)2S2O8-pretreated C/C substrate (named P/G-C/C) by using a dipping method. Subsequently, a calcium phosphate coating was deposited on P/G-C/C, shortened as M-P/G-C/C, by HET, and then converted into HA coating (abbreviated as HA-P/G-C/C) through posthydrothermal treatment. For comparison, HA coating was prepared onto C/C without a P/G interlayer through the same process, which was denoted as HA-C/C. The composition, microstructure, and morphology of the samples were characterized by X-ray diffractometry (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), Raman spectra, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The adhesive performance of the coatings on C/C was measured by a scratch test. Finally, an in vitro bioactivity of the coatings was evaluated in a simulated body fluid solution at 37 °C. Results showed no apparent differences in the morphology and phase of the posttreated coatings, both of which are composed of a dense structure containing needle-like HA crystals. However, the HA-P/G-C/C sample possessed a higher Ca/P ratio and denser interface, thereby exhibiting higher adhesive performance and better bioactivity. The adhesive strength of the HA-P/G coating was observed at a critical load of 41.04 N, which increased by 29.3% relative to the HA coating. Moreover, the failure site was on the HA-P/G coating rather than at the interface. The enhanced adhesive performance was ascribed to the PVA/GO-repairing pits on C/C and PVA and GO toughening effects on the HA coating. In vitro and in vivo tests revealed no statistical significance for the two HA-coated C/C samples, although the HA-P/G coating exhibited better bioactivity, inducing the growth of bonelike apatite than the HA coating.
Collapse
Affiliation(s)
- Xin-Bo Xiong
- College of Materials, Shen Zhen Key Laboratory of Special Functional Materials, Shen Zhen University, Shen Zhen 518086, China
| | - Chun Liu
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
| | - Xin-Ye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
| | - Cai-Qing Liang
- College of Materials, Shen Zhen Key Laboratory of Special Functional Materials, Shen Zhen University, Shen Zhen 518086, China
| | - Xie-Rong Zeng
- College of Materials, Shen Zhen Key Laboratory of Special Functional Materials, Shen Zhen University, Shen Zhen 518086, China
| |
Collapse
|
3
|
Sadasivam R, Packirisamy G. Facile architecture of highly effective nanofibrous membrane adsorbent via electrospun followed by hydrothermal carbonization for potential application in dye removal from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11905-11918. [PMID: 31981031 DOI: 10.1007/s11356-019-07555-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Rapid removal of toxic dye pollutants in water by conventional materials is ineffective and expensive that warrants the necessity for the architecture of hybrid nanofibrous membrane through layer by layer deposition using electrospinning method. In order to achieve this, here we demonstrated the electrospun fabrication of graphene/ferrocene intercalated polyacrylonitrile nanofibrous (GFPN) membrane through hydrothermal carbonization (HTC) method and studied its potential adsorption properties for the removal of environmental pollutants. An aqueous dispersion of graphene/ferrocene (1 mg/mL) stabilized by the polymeric backbone was prepared by the solvent homogenization method and electrospun to yield nanofibrous membrane and further characterized by several analytical and spectroscopic techniques. Raman and XPS investigations corroborated the intercalation of graphene/Fe decorated onto the nanofibrous network. Adsorption experiments found that the GFPN membrane achieved more than 90% removal of anionic Congo red (CR) dye within 30 min in the aqueous phase irrespective of the concentration and takes some additional time for attaining the equilibrium. The longevity and stability of the membrane was studied by conducting successive adsorption-desorption cycles for the regeneration of its adsorption properties. The de-coloration mechanism was comprehensively investigated through the mathematical approaches using the kinetic and intraparticle diffusion studies and confirmed with the experimental findings through IR and XPS spectroscopic techniques. In a nutshell, this work focuses on the fabrication of hybrid nanofibrous membrane and studied its adsorption properties through varying concentrations of dye (20 to 150 mg/L). Moreover, this work extensively explored the mechanism associated with the adsorption process and specifically emphasize the existence of combined phenomena during the process, i.e., anion-cation interactions, hydrogen bonding, and successive stages of intraparticle diffusion through the comparative elucidation of both theoretical and experimental approaches.
Collapse
Affiliation(s)
- Rajkumar Sadasivam
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Roorkee, Uttarakhand, 247667, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Roorkee, Uttarakhand, 247667, India.
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
4
|
Wei G, Gong C, Hu K, Wang Y, Zhang Y. Biomimetic Hydroxyapatite on Graphene Supports for Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1435. [PMID: 31658682 PMCID: PMC6836063 DOI: 10.3390/nano9101435] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022]
Abstract
Hydroxyapatite (HA) has been widely used in fields of materials science, tissue engineering, biomedicine, energy and environmental science, and analytical science due to its simple preparation, low-cost, and high biocompatibility. To overcome the weak mechanical properties of pure HA, various reinforcing materials were incorporated with HA to form high-performance composite materials. Due to the unique structural, biological, electrical, mechanical, thermal, and optical properties, graphene has exhibited great potentials for supporting the biomimetic synthesis of HA. In this review, we present recent advance in the biomimetic synthesis of HA on graphene supports for biomedical applications. More focuses on the biomimetic synthesis methods of HA and HA on graphene supports, as well as the biomedical applications of biomimetic graphene-HA nanohybrids in drug delivery, cell growth, bone regeneration, biosensors, and antibacterial test are performed. We believe that this review is state-of-the-art, and it will be valuable for readers to understand the biomimetic synthesis mechanisms of HA and other bioactive minerals, at the same time it can inspire the design and synthesis of graphene-based novel nanomaterials for advanced applications.
Collapse
Affiliation(s)
- Gang Wei
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Coucong Gong
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Keke Hu
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yabin Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yantu Zhang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
5
|
Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: Biocorrosion and mechanical behavior. J Mech Behav Biomed Mater 2018; 90:575-586. [PMID: 30476807 DOI: 10.1016/j.jmbbm.2018.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
In this work, graphene oxide (GO) reinforcement was used to improve the strength and fracture toughness of the calcium phosphate (CaP) coating applied on the anodized titanium using pulse electrodeposition. Based on the results, the CaP coating consisted of mixed phases of octa-calcium phosphate (OCP), dicalcium phosphate dehydrate (DCPD) and hydroxyapatite (HAp); however, compositing of this coating with GO caused deposition of the pure HAp phase. Moreover, the nanohardness and Young's modulus of the CaP-GO coating increased over 52% and 41%, respectively, as compared to those measured for the GO-free coating. An improvement of about 16% in the adhesion strength of the CaP coating composited with GO to the anodized titanium was also arisen from improving integrity, crystallinity and decreasing the Young's modulus mismatch of this coating with titanium substrate. Finally, uniformity in the microstructure and more biostability of the CaP-GO coating led to its better protection against the corrosion of anodized titanium.
Collapse
|
6
|
Li M, Xiong P, Yan F, Li S, Ren C, Yin Z, Li A, Li H, Ji X, Zheng Y, Cheng Y. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact Mater 2018; 3:1-18. [PMID: 29744438 PMCID: PMC5935763 DOI: 10.1016/j.bioactmat.2018.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023] Open
Abstract
Hydroxyapatite (HA) is an attractive bioceramic for hard tissue repair and regeneration due to its physicochemical similarities to natural apatite. However, its low fracture toughness, poor tensile strength and weak wear resistance become major obstacles for potential clinical applications. One promising method to tackle with these problems is exploiting graphene and its derivatives (graphene oxide and reduced graphene oxide) as nanoscale reinforcement fillers to fabricate graphene-based hydroxyapatite composites in the form of powders, coatings and scaffolds. The last few years witnessed increasing numbers of studies on the preparation, mechanical and biological evaluations of these novel materials. Herein, various preparation techniques, mechanical behaviors and toughen mechanism, the in vitro/in vivo biocompatible analysis, antibacterial properties of the graphene-based HA composites are presented in this review.
Collapse
Affiliation(s)
- Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Pan Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhichen Yin
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Huafang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yufeng Zheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Fathyunes L, Khalil-Allafi J, Sheykholeslami SOR, Moosavifar M. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO 2 nanotubes by ultrasound-assisted pulse electrodeposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:10-21. [PMID: 29549938 DOI: 10.1016/j.msec.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 12/12/2017] [Accepted: 02/19/2018] [Indexed: 11/17/2022]
Abstract
In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium.
Collapse
Affiliation(s)
- Leila Fathyunes
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996 Tabriz, Iran
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996 Tabriz, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran.
| | - Seyed Omid Reza Sheykholeslami
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996 Tabriz, Iran
| | | |
Collapse
|