1
|
Adeleke VT, Ebenezer O, Lasich M, Tuszynski J, Robertson S, Mugo SM. Design and Optimization of Molecularly Imprinted Polymer Targeting Epinephrine Molecule: A Theoretical Approach. Polymers (Basel) 2024; 16:2341. [PMID: 39204561 PMCID: PMC11359759 DOI: 10.3390/polym16162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Molecularly imprinted polymers (MIPs) are a growing highlight in polymer chemistry. They are chemically and thermally stable, may be used in a variety of environments, and fulfill a wide range of applications. Computer-aided studies of MIPs often involve the use of computational techniques to design, analyze, and optimize the production of MIPs. Limited information is available on the computational study of interactions between the epinephrine (EPI) MIP and its target molecule. A rational design for EPI-MIP preparation was performed in this study. First, density functional theory (DFT) and molecular dynamic (MD) simulation were used for the screening of functional monomers suitable for the design of MIPs of EPI in the presence of a crosslinker and a solvent environment. Among the tested functional monomers, acrylic acid (AA) was the most appropriate monomer for EPI-MIP formulation. The trends observed for five out of six DFT functionals assessed confirmed AA as the suitable monomer. The theoretical optimal molar ratio was 1:4 EPI:AA in the presence of ethylene glycol dimethacrylate (EGDMA) and acetonitrile. The effect of temperature was analyzed at this ratio of EPI:AA on mean square displacement, X-ray diffraction, density distribution, specific volume, radius of gyration, and equilibrium energies. The stability observed for all these parameters is much better, ranging from 338 to 353 K. This temperature may determine the processing and operating temperature range of EPI-MIP development using AA as a functional monomer. For cost-effectiveness and to reduce time used to prepare MIPs in the laboratory, these results could serve as a useful template for designing and developing EPI-MIPs.
Collapse
Affiliation(s)
- Victoria T. Adeleke
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi 4031, South Africa;
| | - Oluwakemi Ebenezer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2R3, Canada; (O.E.); (J.T.)
| | - Madison Lasich
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi 4031, South Africa;
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2R3, Canada; (O.E.); (J.T.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Scott Robertson
- Department of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada; (S.R.); (S.M.M.)
| | - Samuel M. Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada; (S.R.); (S.M.M.)
| |
Collapse
|
2
|
Kumar P, Soni I, Jayaprakash GK, Flores-Moreno R. Studies of Monoamine Neurotransmitters at Nanomolar Levels Using Carbon Material Electrodes: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5782. [PMID: 36013918 PMCID: PMC9415512 DOI: 10.3390/ma15165782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Neurotransmitters (NTs) with hydroxyl groups can now be identified electrochemically, utilizing a variety of electrodes and voltammetric techniques. In particular, in monoamine, the position of the hydroxyl groups might alter the sensing properties of a certain neurotransmitter. Numerous research studies using electrodes modified on their surfaces to better detect specific neurotransmitters when other interfering factors are present are reviewed to improve the precision of these measures. An investigation of the monoamine neurotransmitters at nanoscale using electrochemical methods is the primary goal of this review article. It will be used to determine which sort of electrode is ideal for this purpose. The use of carbon materials, such as graphite carbon fiber, carbon fiber micro-electrodes, glassy carbon, and 3D printed electrodes are only some of the electrodes with surface modifications that can be utilized for this purpose. Electrochemical methods for real-time detection and quantification of monoamine neurotransmitters in real samples at the nanomolar level are summarized in this paper.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
| | - Isha Soni
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
| | - Gururaj Kudur Jayaprakash
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - Roberto Flores-Moreno
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Mexico
| |
Collapse
|
3
|
Maia PP, Zin LC, Silva CF, Nascimento CS. Atenolol-imprinted polymer: a DFT study. J Mol Model 2022; 28:177. [PMID: 35654919 DOI: 10.1007/s00894-022-05171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this work was to investigate, via DFT calculations, the molecularly imprinted polymer (MIP) for atenolol (ATL) β-blocker evaluating distinct functional monomers (FMs), solvents, and cross-linker agents (CLAs). As the main result, we could determine from structural and thermodynamic data the best MIP synthesis protocol as being: p-vinyl benzoic acid (APV) as FM, toluene as solvent, and pentaerythritol triacrylate (PETRA) as CLA. We believe this rational design can be very useful for experimentalists in an attempt to perform an efficient synthesis of a MIP for this important β-blocker drug.
Collapse
Affiliation(s)
- Pollyanna P Maia
- LQTC: Laboratório de Química Teórica E Computacional, Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74São João Del Rei, Fábricas, MG, 36301-160, Brazil
| | - Lilian C Zin
- LQTC: Laboratório de Química Teórica E Computacional, Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74São João Del Rei, Fábricas, MG, 36301-160, Brazil
| | - Camilla F Silva
- LQTC: Laboratório de Química Teórica E Computacional, Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74São João Del Rei, Fábricas, MG, 36301-160, Brazil
| | - Clebio S Nascimento
- LQTC: Laboratório de Química Teórica E Computacional, Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74São João Del Rei, Fábricas, MG, 36301-160, Brazil.
| |
Collapse
|
4
|
Mughal ZUN, Shaikh H, Baig JA, Memon S, Sirajuddin, Shah S. Fabrication of an imprinted polymer based graphene oxide composite for label-free electrochemical sensing of Sus DNA. NEW J CHEM 2022. [DOI: 10.1039/d2nj02958h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative label-free electrochemical sensor was developed for selective detection of Sus (pig) Deoxyribonucleic acid (DNA) through adenine imprinted polypyrrole fabricated on the surface of allyl mercaptan modified GO (MIP/mGO).
Collapse
Affiliation(s)
- Zaib un Nisa Mughal
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| | - Jamil Ahmed Baig
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| | - Shahabuddin Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| | - Sirajuddin
- H. E. J. Research Institute of Chemistry, I.C.C.B.S. University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Shahnila Shah
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| |
Collapse
|
5
|
|
6
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
7
|
Silva CF, Menezes LF, Pereira AC, Nascimento CS. Molecularly Imprinted Polymer (MIP) for thiamethoxam: A theoretical and experimental study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Flow-Through Macroporous Polymer Monoliths Containing Artificial Catalytic Centers Mimicking Chymotrypsin Active Site. Catalysts 2020. [DOI: 10.3390/catal10121395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synthetic catalysts that could compete with enzymes in term of the catalytic efficiency but surpass them in stability have a great potential for the practical application. In this work, we have developed a novel kind of organic catalysts based on flow-through macroporous polymer monoliths containing catalytic centers that mimic the catalytic site of natural enzyme chymotrypsin. It is known that chymotrypsin catalytic center consists of L-serine, L-histidine, and L-aspartic acid and has specificity to C-terminal residues of hydrophobic amino acids (L-phenylalanine, L-tyrosine, and L-tryptophan). In this paper, we have prepared the macroporous polymer monoliths bearing grafted polymer layer on their surface. The last one was synthesized via copolymerization of N-methacryloyl-L-serine, N-methacryloyl-L-histidine, and N-methacryloyl-L-aspartic acid. The spatial orientation of amino acids in the polymer layer, generated on the surface of monolithic framework, was achieved by coordinating amino acid-polymerizable derivatives with cobalt (II) ions without substrate-mimicking template and with its use. The conditions for the preparation of mimic materials were optimized to achieve a mechanically stable system. Catalytic properties of the developed systems were evaluated towards the hydrolysis of ester bond in a low molecular substrate and compared to the results of using chymotrypsin immobilized on the surface of a similar monolithic framework. The effect of flow rate increase and temperature elevation on the hydrolysis efficiency were evaluated for both mimic monolith and column with immobilized enzyme.
Collapse
|
9
|
Hand RA, Piletska E, Bassindale T, Morgan G, Turner N. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst 2020; 145:4716-4736. [PMID: 32500888 DOI: 10.1039/d0an00682c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The problem posed by anti-doping requirements is one of the great analytical challenges; multiple compound detection at low ng ml-1 levels from complex samples, with requirements for exceptional confidence in results. This review surveys the design, synthesis and application of molecularly imprinted polymers (MIPs) in this field, focusing on the templating of androgenous anabolic steroids (AASs), as the most commonly abused substances, but also other WADA prohibited substances. Commentary on the application of these materials in detection, clean-up and sensing is offered, alongside views on the future of imprinting in this field.
Collapse
Affiliation(s)
- Rachel A Hand
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| | - Elena Piletska
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas Bassindale
- Department of Chemistry and Forensic Science, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Geraint Morgan
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Nicholas Turner
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| |
Collapse
|
10
|
Computer simulation aided preparation of molecularly imprinted polymers for separation of bilobalide. J Mol Model 2020; 26:198. [PMID: 32632503 DOI: 10.1007/s00894-020-04460-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
In this study, the preparation of molecularly imprinted polymers for bilobalide (BBMIPs) was successfully achieved by bulk polymerization with methacrylamide (MAM), trimethylolpropane triacrylate (TMPTA), and acetonitrile (ACN) as functional monomer, cross-linker, and solvent, respectively. After Gaussian software simulation and single factor experiments, the prepared MIPs with a molar ratio of 1:4:15 for BB-MAM-TMPTA were systematically characterized. The hydrogen bonding interaction between BB and MAM was confirmed by a combination of FTIR and NMR analysis. Thermal gravimetric analysis results displayed that MIPs have excellent thermal stability under high temperature. Additionally, the average pore size and surface area of MIPs were found to be higher than those of NIPs through nitrogen adsorption results. The results of static adsorption and kinetic adsorption suggested that the adsorption equilibrium concentration was 0.6 mg/mL and the equilibrium time was 5 h, and the Langmuir and pseudo-second-order kinetic models were proven to fit with static and kinetic adsorption behaviors, respectively. Meanwhile, the selective adsorption study revealed that MIPs show high adsorption and great selectivity towards BB in comparison with other substances having similarly structure. MIPs also possessed a good performance on reusability, maintaining a high recovery rate after being reused 5 times. The application experiment further indicated that MIPs can effectively separate BB from low purity samples. Therefore, the prepared MIPs had a great potential for BB separation.
Collapse
|
11
|
Biswas S, Naskar H, Pradhan S, Wang Y, Bandyopadhyay R, Pramanik P. Simultaneous voltammetric determination of Adrenaline and Tyrosine in real samples by neodymium oxide nanoparticles grafted graphene. Talanta 2020; 206:120176. [DOI: 10.1016/j.talanta.2019.120176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
|
12
|
Silva CF, Borges KB, Nascimento CS. Computational study on acetamiprid-molecular imprinted polymer. J Mol Model 2019; 25:104. [PMID: 30923961 DOI: 10.1007/s00894-019-3990-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
Abstract
In the present work we investigate, through DFT calculations, the mechanism of formation of a molecular imprinted polymer for the acetamiprid (ACT) insecticide, using four different functional monomers, four molar ratios attempts, and considering eight distinct solvents. As the main result we obtain the following theoretical protocol for the MIP synthesis: methacrylic acid (MMA) as functional monomer, 1:4 M ratio, i.e., one ACT to four MMAs, and chloroform as solvent. This DFT calculated condition shows more favorable energies for the formed complexes. We consider this work quite relevant since it can be used by experimentalists in order to reach an efficient MIP synthesis for ACT, avoiding wasted time and laboratory resources. Graphical abstract Best MIP Synthesis Protocol for Acetamiprid.
Collapse
Affiliation(s)
- Camilla F Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais, 36301-160, Brazil
| | - Keyller B Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais, 36301-160, Brazil
| | - Clebio S Nascimento
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais, 36301-160, Brazil.
| |
Collapse
|
13
|
Crapnell RD, Hudson A, Foster CW, Eersels K, Grinsven BV, Cleij TJ, Banks CE, Peeters M. Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1204. [PMID: 30857285 PMCID: PMC6427210 DOI: 10.3390/s19051204] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023]
Abstract
The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and incorporate these properties into functional sensing platforms. Molecularly imprinted polymers (MIPs) are synthetic receptors that can form high affinity binding sites complementary to the specific analyte of interest. They utilise the shape, size, and functionality to produce sensitive and selective recognition of target analytes. One route of synthesizing MIPs is through electropolymerization, utilising predominantly constant potential methods or cyclic voltammetry. This methodology allows for the formation of a polymer directly onto the surface of a transducer. The thickness, morphology, and topography of the films can be manipulated specifically for each template. Recently, numerous reviews have been published in the production and sensing applications of MIPs; however, there are few reports on the use of electrosynthesized MIPs (eMIPs). The number of publications and citations utilising eMIPs is increasing each year, with a review produced on the topic in 2012. This review will primarily focus on advancements from 2012 in the use of eMIPs in sensing platforms for the detection of biologically relevant materials, including the development of increased polymer layer dimensions for whole bacteria detection and the use of mixed monomer compositions to increase selectivity toward analytes.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Alexander Hudson
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Christopher W Foster
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Kasper Eersels
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Bart van Grinsven
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Thomas J Cleij
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Craig E Banks
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Marloes Peeters
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
14
|
Pereira TF, da Silva AT, Borges KB, Nascimento CS. Carvedilol-Imprinted Polymer: Rational design and selectivity studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Tettamanti CS, Ramírez ML, Gutierrez FA, Bercoff PG, Rivas GA, Rodríguez MC. Nickel nanowires-based composite material applied to the highly enhanced non-enzymatic electro-oxidation of ethanol. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Silva CF, Borges KB, do Nascimento CS. Rational design of a molecularly imprinted polymer for dinotefuran: theoretical and experimental studies aimed at the development of an efficient adsorbent for microextraction by packed sorbent. Analyst 2018; 143:141-149. [PMID: 29120471 DOI: 10.1039/c7an01324h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we studied theoretically the formation process of a molecularly imprinted polymer (MIP) for dinotefuran (DNF), testing distinct functional monomers (FM) in various solvents through density functional theory calculations. The results revealed that the best conditions for MIP synthesis were established with methacrylic acid (MAA) as FM in a 1 : 4 stoichiometry and with chloroform as the solvent. This protocol showed the most favourable stabilization energies for the pre-polymerization complexes. Furthermore, the formation of the FM/template complex is enthalpy driven and the occurrence of hydrogen bonds between the DNF and MAA plays a major role in the complex stability. To confirm the theoretical results, MIP was experimentally synthesized considering the best conditions found at the molecular level and characterized by scanning electron microscopy and thermogravimetric analysis. After that, the synthesized material was efficiently employed in microextraction by packed sorbent combined with high-performance liquid chromatography in a preliminary study of the recovery of DNF from water and artificial saliva samples.
Collapse
Affiliation(s)
- Camilla Fonseca Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil.
| | | | | |
Collapse
|
17
|
Zhang J, Guo XT, Zhou JP, Liu GZ, Zhang SY. Electrochemical preparation of surface molecularly imprinted poly(3-aminophenylboronic acid)/MWCNTs nanocomposite for sensitive sensing of epinephrine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:696-704. [PMID: 30033304 DOI: 10.1016/j.msec.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 05/29/2018] [Accepted: 06/09/2018] [Indexed: 01/19/2023]
Abstract
A nanocomposite with multi-walled carbon nanotubes (MWCNTs) coated with surface molecularly imprinted polymers (MIPs) poly(3-aminophenylboronic acid) (PAPBA) was successfully prepared via potentiodynamic electropolymerization and tested as an effective electrochemical material for epinephrine (EP) detection. The morphology and properties of the sensing material were characterized with scanning electron microscopy and electrochemical impedance spectroscopy. Compared with MWCNTs or non-imprinted polymers PAPBA modified MWCNTs electrodes, the PAPBA(MIPs)/MWCNTs modified electrode showed a lower charge transfer resistance and enhanced electrochemical performance for EP detection. The improved performance can be attributed to the large amount of specific imprinted cavities with boric acid group which can selectively adsorb EP molecule and the synergistic effect between MWCNTs and PAPBA(MIPs). The effects of pH, the molar ratio between monomer and template molecule, the cycle number of electropolymerization, and the accumulation time of the modified electrode on the sensing performance were investigated. It was found that under the optimal conditions, the PAPBA(MIPs)/MWCNTs sensor could effectively recognize EP from many possible interferents of higher concentration within a wide linear range of 0.2-800 μmol·L-1, with low detection limit of 35 nmol·L-1, high sensitivity and good discrimination. The detection of EP in human serum and real injection samples using the PAPBA(MIPs)/MWCNTs sensor also gave satisfactory results.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; Department of Chemistry, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Tong Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun-Ping Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guang-Zhou Liu
- School of Marine Science, Shandong University, Jinan 250100, China
| | - Shu-Yong Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
18
|
Abstract
Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.
Collapse
|
19
|
Cowen T, Karim K, Piletsky S. Computational approaches in the design of synthetic receptors – A review. Anal Chim Acta 2016; 936:62-74. [DOI: 10.1016/j.aca.2016.07.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023]
|