1
|
Chen S, Fan C, Xu Z, Pei M, Wang J, Zhang J, Zhang Y, Li J, Lu J, Peng C, Wei X. Mechanochemical synthesis of organoselenium compounds. Nat Commun 2024; 15:769. [PMID: 38278789 PMCID: PMC10817960 DOI: 10.1038/s41467-024-44891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
We disclose herein a strategy for the rapid synthesis of versatile organoselenium compounds under mild conditions. In this work, magnesium-based selenium nucleophiles are formed in situ from easily available organic halides, magnesium metal, and elemental selenium via mechanical stimulation. This process occurs under liquid-assisted grinding (LAG) conditions, requires no complicated pre-activation procedures, and operates broadly across a diverse range of aryl, heteroaryl, and alkyl substrates. In this work, symmetrical diselenides are efficiently obtained after work-up in the air, while one-pot nucleophilic addition reactions with various electrophiles allow the comprehensive synthesis of unsymmetrical monoselenides with high functional group tolerance. Notably, the method is applied to regioselective selenylation reactions of diiodoarenes and polyaromatic aryl halides that are difficult to operate via solution approaches. Besides selenium, elemental sulfur and tellurium are also competent in this process, which showcases the potential of the methodology for the facile synthesis of organochalcogen compounds.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Chunying Fan
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Mengyao Pei
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Jiemin Wang
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Yanta, China
| | - Jiyu Li
- Xi'an Aisiyi Health Industry Co., Ltd, Xi'an, 710075, China
| | - Junliang Lu
- Xi'an Aisiyi Health Industry Co., Ltd, Xi'an, 710075, China
| | - Cheng Peng
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| | - Xiaofeng Wei
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
2
|
Zhang CP, Wang TZ, Liang YF. Manganese-promoted reductive cross-coupling of disulfides with dialkyl carbonates. Chem Commun (Camb) 2023; 59:14439-14442. [PMID: 37982295 DOI: 10.1039/d3cc04862d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Manganese is a cheap and environmentally friendly metal on Earth. Herein, we report a manganese-promoted reductive cross-coupling using easily available and odorless disulfides as thiolating agents in an excellent 100% sulfur atom economy. The protocol featured a broad substrate scope, including various alkyl disulfides and excellent functional group compatibility, constructing diverse thioethers under simple conditions. Ultimately, thioethers can be prepared in gram-scale reactions and further transformed into structurally complex molecules.
Collapse
Affiliation(s)
- Chao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
3
|
Sun BX, Wang XN, Fan TG, Hou YJ, Shen YT, Li YM. Copper-Catalyzed Cascade Multicomponent Reaction of Azides, Alkynes, and Selenium: Synthesis of Ditriazolyl Diselenides. J Org Chem 2023; 88:4528-4535. [PMID: 36913662 DOI: 10.1021/acs.joc.2c03102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
A copper-catalyzed cascade multicomponent reaction for synthesizing ditriazolyl diselenides from azides, terminal alkynes, and elemental selenium has been developed. The present reaction features utilizing readily available and stable reagents, high atom-economy, and mild reaction conditions. A possible mechanism is proposed.
Collapse
Affiliation(s)
- Bo-Xun Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xu-Nan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Jian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yun-Tao Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
4
|
Chen CL, Li JC, Liu MC, Zhou YB, Wu HY. Metal-Free Synthesis of Diselenides and Ditellurides by using TMSCN. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Guo T, Li Z, Bi L, Fan L, Zhang P. Recent advances in organic synthesis applying elemental selenium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Deng Y, Zeng X, Xu H, Liu J, Zhang J, Hu D, Xie J. Highly efficient synthesis of diselenides and ditellurides catalyzed by polyoxomolybdate-based copper. NEW J CHEM 2022. [DOI: 10.1039/d2nj04560e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A polyoxomolybdate-based copper-catalyzed synthesis of diselenides and ditellurides from organic iodides and elemental selenium or tellurium in moderate to excellent yields is developed.
Collapse
Affiliation(s)
- Yuanyuan Deng
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Hao Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jiawei Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Junyong Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Dongcheng Hu
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jingli Xie
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
7
|
Kundu D, Roy A, Panja S. Transition Metal Catalyst, Solvent, Base Free Synthesis of Diaryl Diselenides under Mechanical Ball Milling. Curr Org Synth 2021; 19:COS-EPUB-119687. [PMID: 34951576 DOI: 10.2174/1570179419666211224144932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
A convenient, efficient, and general procedure for the synthesis of diaryl diselenides has been developed by the reaction of aryl diazonium tetrafluoroborates and Potassium Selenocyanate on the surface of alumina under ball-milling in absence of any solvent, transition metal catalyst and base in room temperature. A wide range of functionalized diaryl diselenides are obtained in high purity and high yield by this procedure. BACKGROUND Synthesis of diaryl diselenides was restricted into only few Cu-catalyzed C-Se Cross coupling protocol where use of ligands, high reaction temp, long reaction time were required. OBJECTIVE To achieve a sustainable protocol for the synthesis of diaryl diselenides Method: Reaction of aryl diazonium fluoroborate with KSeCN was successfully performed under ball milling in absence of any ransition metal catalyst, ligands, base and external heating to get diaryl diselenides. RESULTS A library of diaryl diselenides were obtained in good yields with different functional groups. CONCLUSION First transition metal free protocol for the synthesis of diaryl diselenides has been developed successfully.
Collapse
Affiliation(s)
- Debasish Kundu
- Department of Chemistry, Government General Degree College at Mangalkote, Affiliated to The University of Burdwan, Purba Bardhaman-713132, India
| | - Anup Roy
- Department of Chemistry, Government General Degree College at Mangalkote, Affiliated to The University of Burdwan, Purba Bardhaman-713132, India
| | - Subir Panja
- Department of Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
8
|
Ma Y, Liu M, Zhou Y, Wu H. Synthesis of Organoselenium Compounds with Elemental Selenium. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang‐Tong Ma
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Miao‐Chang Liu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Yun‐Bing Zhou
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Hua‐Yue Wu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
9
|
Kohzadi H, Soleiman-Beigi M. A recyclable heterogeneous nanocatalyst of copper-grafted natural asphalt sulfonate (NAS@Cu): characterization, synthesis and application in the Suzuki–Miyaura coupling reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj01883j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NAS@Cu has synthesis simplicity given the availability of natural materials and has advantages such as being eco-friendly, high reactivity and recyclability.
Collapse
Affiliation(s)
- Homa Kohzadi
- Department of Chemistry
- Faculty of Basic Sciences
- Ilam University
- Ilam
- Iran
| | | |
Collapse
|
10
|
One-pot preparation of (RSe)2CF2 and (RS)2CF2 compounds via insertion of TMSCF3-derived difluorocarbene into diselenides and disulfides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Parida A, Choudhuri K, Mal P. Unsymmetrical Disulfides Synthesis via Sulfenium Ion. Chem Asian J 2019; 14:2579-2583. [PMID: 31136094 DOI: 10.1002/asia.201900620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/24/2019] [Indexed: 12/15/2022]
Abstract
An umpolung approach for the synthesis of unsymmetrical disulfides via sulfenium ion is reported. In situ generated electrophilic sulfenium ion from electron-rich thiols reacted with second thiols to yield unsymmetrical disulfides. Using an iodine catalyst and 4-dimethylaminopyridine (DMAP)/water as promoter, the target syntheses were achieved in one pot under aerobic condition.
Collapse
Affiliation(s)
- Amarchand Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Khokan Choudhuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
12
|
Prasad SS, Sudarsanakumar M, Dhanya V, Suma S, Kurup MP. Synthesis and characterization of a prominent NLO active MOF of lead with 1,5-naphthalenedisulfonic acid. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
CuO nanoparticles-catalyzed a novel method to the synthesis of symmetrical diselenides from aryl halides: selenoamide as an organic Se-donor reagent. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Soleiman-Beigi M, Sadeghizadeh F, Basereh A. Metal–organic framework MOF-199-catalyzed direct and one-pot synthesis of thiols, sulfides and disulfides from aryl halides in wet polyethylene glycols (PEG 400). J Sulphur Chem 2017. [DOI: 10.1080/17415993.2017.1329427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Ali Basereh
- Department of Chemistry, Ilam University, Ilam, Iran
| |
Collapse
|
15
|
Sadeghi S, Jafarzadeh M, Reza Abbasi A, Daasbjerg K. Incorporation of CuO NPs into modified UiO-66-NH2 metal–organic frameworks (MOFs) with melamine for catalytic C–O coupling in the Ullmann condensation. NEW J CHEM 2017. [DOI: 10.1039/c7nj02114c] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UiO-66-NH2 is initially modified with melamine via a post-synthetic approach. CuO NPs are then anchored via the available functional groups on the surface of the modified MOF.
Collapse
Affiliation(s)
- Samira Sadeghi
- Faculty of Chemistry, Razi University
- Kermanshah 67149-67346
- Iran
| | | | | | - Kim Daasbjerg
- Department of Chemistry
- Aarhus University
- Langelandsgade 140
- 8000 Aarhus C
- Denmark
| |
Collapse
|
16
|
Soleiman-Beigi M, Mohammadi F. Simple and green method for synthesis of symmetrical dialkyl disulfides and trisulfides from alkyl halides in water; PMOxT as a sulfur donor. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1253696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Abbasi M, Nowrouzi N, Latifi H. Selective synthesis of organic sulfides or disulfides by solvent exchange from aryl halides and KSCN catalyzed by NiCl2·6H2O. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Bhojane JM, Sarode SA, Nagarkar JM. Aryl diazonium salt and thioacetamide: a catalyst free, efficient blend of an inexpensive arylating agent with “S” surrogate for sulphide synthesis. RSC Adv 2016. [DOI: 10.1039/c6ra12557c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metal free, chemoselective method for C–S, S–S bond formation reactions.
Collapse
|
19
|
Li Z, Meng F, Zhang J, Xie J, Dai B. Efficient and recyclable copper-based MOF-catalyzed N-arylation of N-containing heterocycles with aryliodides. Org Biomol Chem 2016; 14:10861-10865. [DOI: 10.1039/c6ob02068b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper-based MOF-199 was used as an efficient heterogeneous catalyst to catalyze cross-coupling reactions between N-containing heterocycles and aryliodides with high yields.
Collapse
Affiliation(s)
- Zihao Li
- School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Fei Meng
- Guangdong Bioengineering Institute
- Guangdong Academy of Science
- Guangzhou 510316
- China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Jianwei Xie
- School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| |
Collapse
|