1
|
Mariammal M, Sahane N, Tiwari S. Water-soluble anionic N-confused porphyrin for sensitive and selective detection of heavy metal pollutants in aqueous environment. ANAL SCI 2023:10.1007/s44211-023-00341-5. [PMID: 37140885 DOI: 10.1007/s44211-023-00341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
Efficient detection and quantification of metal ions in real time and in a cost-effective manner is a critical step in combating the increasing danger of heavy metal contamination of our biosphere. The potential of water-soluble anionic derivative of N-confused tetraphenylporphyrin (WS-NCTPP) has been investigated for quantitative detection of heavy metal ions. The results show that the photophysical properties of WS-NCTPP differ significantly in the presence of four metal ions, namely Hg(II), Zn(II), Co(II) and Cu(II). The variation in the spectral behaviour is driven by the formation of 1:1 complexes with all the four cations with varied degree of complexation. The selectivity of the sensing is studied through interference studies, indicating maximum selectivity for Hg(II) cations. Computational studies of the structural features of the metal complexes with WS-NCTPP help in establishing the geometry and binding interactions between the metal ions and the porphyrin nucleus. The results demonstrate the promising potential of the NCTPP probe which should be utilized for detection of heavy metal ions, especially mercury, in the near future.
Collapse
Affiliation(s)
- Muthu Mariammal
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Nisha Sahane
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Shraeddha Tiwari
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
2
|
Zhang Q, Yu W, Liu Z, Li H, Liu Y, Liu X, Han Z, He J, Zeng Y, Guo Y, Liu Y. Design, synthesis, antitumor activity and ct-DNA binding study of photosensitive drugs based on porphyrin framework. Int J Biol Macromol 2023; 230:123147. [PMID: 36621729 DOI: 10.1016/j.ijbiomac.2023.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Photodynamic therapy is a promising novel tumor treatment method. In this study, novel porphyrin-chrysin photosensitizer derivatives were synthesized. Most of the compounds showed antitumor activity against human cervical cancer HeLa cells and human lung cancer A549 cells, among which compound 4c had the best photodynamic therapy effect on HeLa cells and A549 cells, with IC50 values of 6.26 μM and 23.37 μM, respectively. Free-base porphyrin-chrysin derivatives bind to DNA through surface self-stacking, and zinc metalloporphyrin-chrysin derivatives bind to ct-DNA through intercalation. Notably, the tightness of compound binding to ct-DNA was positively correlated with its antitumor activity. What's more, three-dimensional quantitative conformation studies have shown that increasing the positive charge of the porphyrin ring and introducing a strong electron-withdrawing group at the meso position of the porphyrin ring at the para-position of the benzene ring or reducing the space volume of the compound can enhance the antitumor activity.
Collapse
Affiliation(s)
- Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yihui Liu
- The second Hospital, University of South China, PR China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Zhaoshun Han
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Yaofu Zeng
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
3
|
Raveena, Singh MP, Sengar M, Kumari P. Synthesis of Graphene oxide/Porphyrin Nanocomposite for Photocatalytic Degradation of Crystal Violet Dye. ChemistrySelect 2023. [DOI: 10.1002/slct.202203272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Raveena
- Department of Chemistry University of Delhi New Delhi 110007 India
- Bio-organic material research laboratory, Department of Chemistry, Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| | - Manoj P. Singh
- Advanced Instrumentation Research Facility Jawaharlal Nehru University New Delhi 110067 India
| | - Manisha Sengar
- Department of Zoology, Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| | - Pratibha Kumari
- Bio-organic material research laboratory, Department of Chemistry, Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| |
Collapse
|
4
|
Yasmeen R, Singhaal R, Bajju GD, Sheikh HN. Axially coordinated tin porphyrins anchored graphene oxide hybrid composites as productive catalyst for catalytic conversion of 4-nitrophenol to 4-aminophenol. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Lewandowska-Andralojc A, Gacka E, Pedzinski T, Burdzinski G, Lindner A, O'Brien JM, Senge MO, Siklitskaya A, Kubas A, Marciniak B, Walkowiak-Kulikowska J. Understanding structure-properties relationships of porphyrin linked to graphene oxide through π-π-stacking or covalent amide bonds. Sci Rep 2022; 12:13420. [PMID: 35927398 PMCID: PMC9352710 DOI: 10.1038/s41598-022-16931-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Two graphene oxide nanoassemblies using 5-(4-(aminophenyl)-10,15,20-triphenylporphyrin (TPPNH2) were fabricated by two synthetic methods: covalent (GO-CONHTPP) and noncovalent bonding. GO-CONHTPP was achieved through amide formation at the periphery of GO sheets and the hybrid material was fully characterized by FTIR, XPS, Raman spectroscopy, and SEM. Spectroscopic measurements together with theoretical calculations demonstrated that assembling TPPNH2 on the GO surface in DMF-H2O (1:2, v/v) via non-covalent interactions causes changes in the absorption spectra of porphyrin, as well as efficient quenching of its emission. Interestingly, covalent binding to GO does not affect notably neither the porphyrin absorption nor its fluorescence. Theoretical calculations indicates that close proximity and π-π-stacking of the porphyrin molecule with the GO sheet is possible only for the non-covalent functionalization. Femtosecond pump-probe experiments revealed that only the non-covalent assembly of TPPNH2 and GO enhances the efficiency of the photoinduced electron transfer from porphyrin to GO. In contrast to the non-covalent hybrid, the covalent GO-CONHTPP material can generate singlet oxygen with quantum yields efficiency (ΦΔ = 0.20) comparable to that of free TPPNH2 (ΦΔ = 0.26), indicating the possible use of covalent hybrid materials in photodynamic/photothermal therapy. The spectroscopic studies combined with detailed quantum-chemical analysis provide invaluable information that can guide the fabrication of hybrid materials with desired properties for specific applications.
Collapse
Affiliation(s)
- Anna Lewandowska-Andralojc
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland. .,Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| | - Ewelina Gacka
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.,Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Tomasz Pedzinski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.,Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Gotard Burdzinski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Aleksandra Lindner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Jessica M O'Brien
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.,Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, 85748, Garching, Germany
| | - Aleksandra Siklitskaya
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Bronislaw Marciniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.,Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | | |
Collapse
|
6
|
Porphyrin Functionalized Laser-Induced Graphene and Porous WO3 Assembled Effective Z-Scheme Photocatalyst for Promoted Visible-Light-Driven Degradation of Ciprofloxacin. Catal Letters 2022. [DOI: 10.1007/s10562-021-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Khanlarkhani S, Akbarzadeh AR, Rahimi R. A retrospective-prospective survey of porphyrinoid fluorophores: towards new architectures as an electron transfer systems promoter. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Development of the molecular engineering of disazo dye sensitizers and TiO2 semiconductor surface to improve the power conversion efficiency of dye-sensitized solar cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ma W, Yang H, Hu Y, Chen L. Fabrication of
PEGylated
porphyrin/reduced graphene oxide/doxorubicin nanoplatform for tumour combination therapy. POLYM INT 2021. [DOI: 10.1002/pi.6216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Weiqian Ma
- Department of Chemistry Northeast Normal University Changchun PR China
| | - Huailin Yang
- Department of Chemistry Northeast Normal University Changchun PR China
| | - Yanfang Hu
- Fachgruppe Chemie Institut für Organische Chemie, RWTH Aachen Aachen Germany
| | - Li Chen
- Department of Chemistry Northeast Normal University Changchun PR China
| |
Collapse
|
10
|
Awad FS, AbouZied KM, Bakry AM, Abou El-Maaty WM, El-Wakil AM, El-Shall MS. Highly fluorescent hematoporphyrin modified graphene oxide for selective detection of copper ions in aqueous solutions. Anal Chim Acta 2020; 1140:111-121. [DOI: 10.1016/j.aca.2020.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
|
11
|
Recent Advances in Porphyrin-Based Materials for Metal Ions Detection. Int J Mol Sci 2020; 21:ijms21165839. [PMID: 32823943 PMCID: PMC7461582 DOI: 10.3390/ijms21165839] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Porphyrins have planar and conjugated structures, good optical properties, and other special functional properties. Owing to these excellent properties, in recent years, porphyrins and their analogues have emerged as a multifunctional platform for chemical sensors. The rich chemistry of these molecules offers many possibilities for metal ions detection. This review mainly discusses two types of molecular porphyrin and porphyrin composite sensors for metal ions detection, because porphyrins can be functionalized to improve their functional properties, which can introduce more chemical and functional sites. According to the different application materials, the section of porphyrin composite sensors is divided into five sub-categories: (1) porphyrin film, (2) porphyrin metal complex, (3) metal–organic frameworks, (4) graphene materials, and (5) other materials, respectively.
Collapse
|
12
|
Alavi M, Rahimi R, Maleki Z, Hosseini-Kharat M. Improvement of Power Conversion Efficiency of Quantum Dot-Sensitized Solar Cells by Doping of Manganese into a ZnS Passivation Layer and Cosensitization of Zinc-Porphyrin on a Modified Graphene Oxide/Nitrogen-Doped TiO 2 Photoanode. ACS OMEGA 2020; 5:11024-11034. [PMID: 32455223 PMCID: PMC7241021 DOI: 10.1021/acsomega.0c00855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
It is vital to acquire power conversion efficiencies comparable to other emerging solar cell technologies by making quantum dot-sensitized solar cells (QDSSCs) competitive. In this study, the effect of graphene oxide (GO), nitrogen, manganese, and a porphyrin compound on the performance of QDSSCs based on a TiO2/CdS/ZnS photoanode was investigated. First, adding GO and nitrogen into TiO2 has a conspicuous impact on the cell efficacy. Both these materials reduce the recombination rate and expand the specific surface area of TiO2 as well as dye loading, reinforcing cell efficiency value. The maximum power conversion efficiency of QDSSC with a GO N-doped photoelectrode was 2.52%. Second, by employing Mn2+ (5 and 10 wt %) doping of ZnS, we have succeeded in considerably improving cell performance (from 2.52 to 3.47%). The reason for this could be for the improvement of the passivation layer of ZnS by Mn2+ ions, bringing about to a smaller recombination of photoinjected electrons with either oxidized dye molecules or electrolyte at the surface of titanium dioxide. However, doping of 15 wt % Mn2+ had an opposite effect and somewhat declined the cell performance. Finally, a Zn-porphyrin dye was added to the CdS/ZnS by a cosensitization method, widening the light absorption range to the NIR (near-infrared region) (>700 nm), leading to the higher short-circuit current density (J SC) and cell efficacy. Utilizing an environmentally safe porphyrin compound into the structure of QDSSC has dramatically enhanced the cell efficacy to 4.62%, which is 40% higher than that of the result obtained from the TiO2/CdS/ZnS photoelectrode without porphyrin coating.
Collapse
|
13
|
Akbarzadeh AR, Nekoeifard M, Rahmatollah R, Keshavarz MH. Two spectral QSPR models of porphyrin macromolecules for chelating heavy metals and different ligands released from industrial solvents: CH 2Cl 2, CHCl 3 and toluene. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:347-371. [PMID: 32460542 DOI: 10.1080/1062936x.2020.1747534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Two simple and reliable correlations are introduced for the prediction of emission and absorption of porphyrins and their derivatives, i.e. metalloporphyrins and ligand coordinated metalloporphyrins. They can be used to sense the extracted precious metals. The proposed models require only simple structural parameters such as the number of carbon, metal and metal-free molecular fragments of desirable porphyrins or their derivatives. Since the proposed models depend on molecular structures of the desired compounds, they can be easily applied for complex molecular structures. Experimental data of 272 porphyrin derivatives were used to derive and test the novel models for the assessment of their emission (Em.) and absorption (Abs.) values in three solvents namely dichloromethane, toluene and chloroform. The values of the coefficients of determination (r 2) for the training set (183 compounds) in dichloromethane and three different test sets, corresponding to the three mentioned solvents, for the emission and absorption correlations were greater than 0.70. The calculated values of the root-mean-square error (RMSE) for the training sets of Em. and Abs. correlations were equal to 7.56 and 4.86 nm, respectively. Further statistical parameters also confirm the high reliability of the new models.
Collapse
Affiliation(s)
- A R Akbarzadeh
- Department of Chemistry, University of Science and Technology , Tehran, Islamic Republic of Iran
| | - M Nekoeifard
- Department of Chemistry, University of Science and Technology , Tehran, Islamic Republic of Iran
| | - R Rahmatollah
- Department of Chemistry, University of Science and Technology , Tehran, Islamic Republic of Iran
| | - M H Keshavarz
- Department of Chemistry, Malek-ashtar University of Technology , Shahin-shahr, Islamic Republic of Iran
| |
Collapse
|
14
|
Liu D, Zhang Q, Zhang L, Yu W, Long H, He J, Liu Y. Novel photosensitizing properties of porphyrin–chrysin derivatives with antitumor activity in vitro. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820907248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photodynamic therapy is a promising cancer treatment with the advantages of low toxicity, high efficiency, and noninvasiveness. In this study, 23 novel porphyrin–chrysin derivatives are synthesized using alkyl carbon chains as bridges. We use human gastric cancer cells (MGC-803) and human cervical cancer cells to evaluate the in vitro antitumor activity of all the porphyrin–chrysin derivatives, with 5-fluorouracil (5-Fu) as a positive control. Several of the prepared compounds showed effective photodynamic killing effects, among which 5-hydroxy-2-phenyl-7-(2-(4-(10,15,20-tris(4-hydroxyphenyl)porphyrin-5-yl)phenoxy)ethoxy)-4 H-chromen-4-one shows the highest antiproliferation activity on human cervical cancer cells, with a half maximal inhibitory concentration of 26.51 ± 1.15 µM. Flow cytometry analysis showed that human cervical cancer cell apoptosis might be induced by G1 phase arrest.
Collapse
Affiliation(s)
- Ding Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Lang Zhang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, P.R. China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Huizhi Long
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, P.R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| |
Collapse
|
15
|
Awad FS, AbouZied KM, Abou El-Maaty WM, El-Wakil AM, Samy El-Shall M. Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
16
|
Lei Y, Zhang F, Guan P, Guo P, Wang G. Rapid and selective detection of Hg(ii) in water using AuNP in situ-modified filter paper by a head-space solid phase extraction Zeeman atomic absorption spectroscopy method. NEW J CHEM 2020. [DOI: 10.1039/d0nj02294b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuNPs modified filter paper as sensitive mercury sensor was applied in the head-space solid phase extraction (HS-SPE) of Hg(ii). With negative pressure sampling, it can achieve in situ sampling and detection rapidly in a complex environment.
Collapse
Affiliation(s)
- Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Fang Zhang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Peng Guan
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Guanhua Wang
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
17
|
Magnetism-reinforced in-tube solid phase microextraction for the online determination of trace heavy metal ions in complex samples. Anal Chim Acta 2019; 1090:82-90. [DOI: 10.1016/j.aca.2019.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/22/2022]
|
18
|
Zhang W, Ruan G, Li X, Jiang X, Huang Y, Du F, Li J. Novel porous carbon composites derived from a graphene-modified high-internal- phase emulsion for highly efficient separation and enrichment of triazine herbicides. Anal Chim Acta 2019; 1071:17-24. [DOI: 10.1016/j.aca.2019.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
|
19
|
Manouchehri M, Seidi S, Rouhollahi A, Shanehsaz M. Porphyrin-functionalized graphene oxide sheets: An efficient nanomaterial for micro solid phase extraction of non-steroidal anti-inflammatory drugs from urine samples. J Chromatogr A 2019; 1607:460387. [PMID: 31358296 DOI: 10.1016/j.chroma.2019.460387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 01/21/2023]
Abstract
In this work, porphyrin-functionalized graphene oxide nanosheets (GO@meso-tetrakis(4-hydroxyphenyl)porphyrin) were synthesized and employed as the sorbent. Porphyrins owing to their unique structures and tunable terminal functional groups are expected to be promising media for extraction of the desired analytes. Also, GO with a high specific surface area has exhibited good potential for the extraction purposes. Inspired by these intriguing properties, the combination of GO and porphyrin can benefit both of these amazing features. The synthesized sorbent was utilized for micro solid phase extraction of non-steroidal anti-inflammatory drugs followed by HPLC-UV. Optimization of the experimental factors including sorbent amount, sample pH, sample and eluent flowrates, eluent volume, and the number of desorption cycles were performed with the aid of central composite design. Under the optimal conditions, the calibration curves were linear within the range of 2.0-600 ng mL-1 and limits of detection were found between 0.5-2.0 ng mL-1. The preconcentration factors and absolute recoveries were obtained in the range of 4.80-9.79 and 29%-59%, respectively. The matrix effect for the urine samples varied between 81.9%-91.6% at two concentrations of 50 and 300 ng mL-1, respectively. Intra- and inter-day RSD% (n = 3) of the spiked urine samples at three level concentrations of 25, 100, and 300 ng mL-1 were less than 10%. The relative recoveries of the urine samples were calculated in the range of 85.2-98.6%. Eventually, the method exhibits proper sensitivity, excellent repeatability, high reusability, and acceptable precision and accuracy.
Collapse
Affiliation(s)
- Mahshid Manouchehri
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran.
| | - Ahmad Rouhollahi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Maryam Shanehsaz
- Analytical Chemistry Research Laboratory, Mobin Shimi Azma Company, Tehran, Iran
| |
Collapse
|
20
|
Parsaee Z, Karachi N, Abrishamifar SM, Kahkha MRR, Razavi R. Silver-choline chloride modified graphene oxide: Novel nano-bioelectrochemical sensor for celecoxib detection and CCD-RSM model. ULTRASONICS SONOCHEMISTRY 2018; 45:106-115. [PMID: 29705303 DOI: 10.1016/j.ultsonch.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
In this study, silver nanoparticles modified choline chloride functionalized graphene oxide (AgNPs-ChCl-GO) was synthesized using sonochemical method and utilized as a bioelectrochemical sensor for detection of celecoxib (CEL). The characterization studies were ultimately performed in order to acheive a more complete understanding of the morphological and structural features of the AgNPs-ChCl-GO using different techniques including FT-IR, AFM, FE-SEM, EDX, and XRD. AgNPs-ChCl-GO demonstrated a significant improvement in the reduction activity of CEL due to the enhancement in the current response compared to the bare carbon paste electrode (CPE). The optimum experimental conditions, were optimized using central composite design (CCD) methodology. The differential pulse voltammetry (DPVs) showed an expanded linear dynamic ranges of 9.6 × 10-9-7.4 × 10-7 M for celecoxib in Britton-Robinson buffer in pH 5.0 with. LOD (S/N = 3) and LOQ (S/N = 10) were obtained 2.51 × 10-9 M and 6.58 × 10-9 M respectively. AgNPs-ChCl-GO-carbon paste electrode exhibited suitable properties and high accuracy determination of celecoxib in the human plasma sample.
Collapse
Affiliation(s)
- Zohreh Parsaee
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Nima Karachi
- Department of Chemistry, Islamic Azad University, Marvdasht Branch, Marvdasht, Iran
| | - Seyyed Milad Abrishamifar
- Department of Chemical Engineering, New York International University of Technology And Management, New York, USA
| | | | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| |
Collapse
|
21
|
Li Y, Li J, Li Y, Li Y, Song Y, Niu S, Li N. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity. ULTRASONICS SONOCHEMISTRY 2018; 40:798-807. [PMID: 28946488 DOI: 10.1016/j.ultsonch.2017.08.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 05/14/2023]
Abstract
In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases.
Collapse
Affiliation(s)
- Yongshen Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Jihui Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Yuehai Li
- Department of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yali Li
- Department of Surgery, Yongnian County Hospital of Traditional Chinese Medicine, Yongnian 057150, PR China
| | - Yunan Song
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Shuai Niu
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Ning Li
- The Real Estate CO., LTD. of CSCEC, Beijing 100070, PR China
| |
Collapse
|
22
|
Keyhaniyan M, Shiri A, Eshghi H, Khojastehnezhad A. Synthesis, characterization and first application of covalently immobilized nickel-porphyrin on graphene oxide for Suzuki cross-coupling reaction. NEW J CHEM 2018. [DOI: 10.1039/c8nj04157a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, nickel(ii)-coordinated 5,10,15,20-tetrakis(aminophenyl)porphyrin (NiTAPP) as a macrocyclic complex was covalently grafted to the edge of graphene oxide (GO) and applied as nanocatalyst in Suzuki cross-coupling reaction.
Collapse
Affiliation(s)
- Mahdi Keyhaniyan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
- Mashhad
- Iran
| |
Collapse
|
23
|
Lee H, Hong KI, Jang WD. Design and applications of molecular probes containing porphyrin derivatives. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.06.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Azmi NA, Ahmad SH, Low SC. Detection of mercury ions in water using a membrane-based colorimetric sensor. RSC Adv 2018. [DOI: 10.1039/c7ra11450h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The effectiveness of a colorimetric sensor is highly influential by the morphology characteristics of a membrane platform that affect the color change responses.
Collapse
Affiliation(s)
- N. A. Azmi
- School of Chemical Engineering
- Engineering Campus
- Universiti Sains Malaysia
- 14300 Nibong Tebal S.P.S. Penang
- Malaysia
| | - S. H. Ahmad
- School of Chemical Engineering
- Engineering Campus
- Universiti Sains Malaysia
- 14300 Nibong Tebal S.P.S. Penang
- Malaysia
| | - S. C. Low
- School of Chemical Engineering
- Engineering Campus
- Universiti Sains Malaysia
- 14300 Nibong Tebal S.P.S. Penang
- Malaysia
| |
Collapse
|
25
|
Kielmann M, Prior C, Senge MO. Porphyrins in troubled times: a spotlight on porphyrins and their metal complexes for explosives testing and CBRN defense. NEW J CHEM 2018. [DOI: 10.1039/c7nj04679k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A critical perspective on (metallo)porphyrins in security-related applications: the past, present and future of explosives detection, CBRN defense, and beyond.
Collapse
Affiliation(s)
- Marc Kielmann
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
| | - Caroline Prior
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
| | - Mathias O. Senge
- Medicinal Chemistry
- Trinity Translational Medicine Institute
- Trinity Centre for Health Sciences
- Trinity College Dublin
- The University of Dublin
| |
Collapse
|
26
|
Pourbasheer E, Morsali S, Azari Z, Karimi MA, Ganjali MR. Design of a novel optical sensor for determination of trace amounts of copper by UV–visible spectrophotometry in real samples. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eslam Pourbasheer
- Department of ChemistryPayame Noor University (PNU) PO Box 19395‐3697 Tehran Iran
| | - Somayeh Morsali
- Department of ChemistryPayame Noor University (PNU) PO Box 19395‐3697 Tehran Iran
| | - Zhila Azari
- Department of ChemistryPayame Noor University (PNU) PO Box 19395‐3697 Tehran Iran
| | - Mohammad Ali Karimi
- Department of ChemistryPayame Noor University (PNU) PO Box 19395‐3697 Tehran Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in ElectrochemistryUniversity of Tehran Tehran Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
27
|
Sheng K, Wang L, Li H, Zou L, Ye B. Green synthesized Co nanoparticles doped amino-graphene modified electrode and its application towards determination of baicalin. Talanta 2017; 164:249-256. [DOI: 10.1016/j.talanta.2016.11.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 01/27/2023]
|
28
|
Lin Q, Mao PP, Liu L, Liu J, Zhang YM, Yao H, Wei TB. A novel water soluble chemosensor based on carboxyl functionalized NDI derivatives for selective detection and facile removal of mercury(ii). RSC Adv 2017. [DOI: 10.1039/c6ra28419a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A novel water-soluble Hg2+ sensor M2 has been designed and synthesized, which can provide a fluorescent “turn-on” response when it detects Hg2+. More meaningfully, the sensor M2 can remove Hg2+ from water effectively.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Peng-Peng Mao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Lu Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Juan Liu
- College of Chemical Engineering
- Northwest University for Nationalities
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
29
|
Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H. Highly efficient simultaneous adsorption of Cd(ii), Hg(ii) and As(iii) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: central composite design optimization. NEW J CHEM 2017. [DOI: 10.1039/c7nj01450c] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient simultaneous adsorption of heavy metal ions from solutions by modified graphene oxide with 3-aminopyrazole using central composite design modeling.
Collapse
Affiliation(s)
- M. Alimohammady
- Faculty of Chemical
- Petroleum and Gas Eng
- Semnan University
- Semnan
- Islamic Republic of Iran
| | - M. Jahangiri
- Faculty of Chemical
- Petroleum and Gas Eng
- Semnan University
- Semnan
- Islamic Republic of Iran
| | - F. Kiani
- Department of Chemistry
- Ayatollah Amoli Branch
- Islamic Azad University
- P. O. Box 678 Amol
- Iran
| | - H. Tahermansouri
- Department of Chemistry
- Ayatollah Amoli Branch
- Islamic Azad University
- P. O. Box 678 Amol
- Iran
| |
Collapse
|
30
|
Zhang HL, Li WT, Qu WJ, Wei TB, Lin Q, Zhang YM, Yao H. Mercaptooxazole–phenazine based blue fluorescent sensor for the ultra-sensitive detection of mercury(ii) ions in aqueous solution. RSC Adv 2017. [DOI: 10.1039/c7ra07992c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herein, a fluorescent sensor based on the mechanism of the deprotonation process was designed and synthesized, which could detect Hg2+ in aqueous solution with remarkable fluorescence color changed (from yellow to light blue).
Collapse
Affiliation(s)
- Hai-Li Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Wen-Ting Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Wen-Juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
31
|
Tadjarodi A, Moazen Ferdowsi S, Zare-Dorabei R, Barzin A. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies. ULTRASONICS SONOCHEMISTRY 2016; 33:118-128. [PMID: 27245963 DOI: 10.1016/j.ultsonch.2016.04.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications.
Collapse
Affiliation(s)
- Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Somayeh Moazen Ferdowsi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ahmad Barzin
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
32
|
Paolesse R, Nardis S, Monti D, Stefanelli M, Di Natale C. Porphyrinoids for Chemical Sensor Applications. Chem Rev 2016; 117:2517-2583. [PMID: 28222604 DOI: 10.1021/acs.chemrev.6b00361] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.
Collapse
Affiliation(s)
- Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Donato Monti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata , via del Politecnico, 00133 Rome, Italy
| |
Collapse
|
33
|
Zare-Dorabei R, Ferdowsi SM, Barzin A, Tadjarodi A. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2'-dipyridylamine: Central composite design optimization. ULTRASONICS SONOCHEMISTRY 2016; 32:265-276. [PMID: 27150770 DOI: 10.1016/j.ultsonch.2016.03.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 05/25/2023]
Abstract
In present work, a graphene oxide chemically modified with 2,2'-dipyridylamine (GO-DPA), was synthesized by simple, fast and low-cost process for the simultaneous adsorption of four toxic heavy metals, Pb(II), Cd(II), Ni(II) and Cu(II), from aqueous solutions. The synthesized adsorbent was characterized by FT-IR, XRD, XPS, SEM and AFM measurements. The effects of variables such as pH solution, initial ion concentrations, adsorbent dosage and sonicating time were investigated on adsorption efficiency by rotatable central composite design. The optimum conditions, specified as 8mg of adsorbent, 20mgL(-1) of each ion at pH 5 and short time of 4min led to the achievement of a high adsorption capacities. Ultrasonic power had important role in shortening the adsorption time of ions by enhancing the dispersion of adsorbent in solution. The adsorption kinetic studies and equilibrium isotherms for evaluating the mechanism of adsorption process showed a good fit to the pseudo-second order and Langmuir model, respectively. The maximum adsorption capacities (Qm) of this adsorbent were 369.749, 257.201, 180.893 and 358.824mgg(-1) for lead, cadmium, nickel and copper ions, respectively. The removal performance of adsorbent on the real wastewater samples also showed the feasibility of adsorbent for applying in industrial purposes.
Collapse
Affiliation(s)
- Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Somayeh Moazen Ferdowsi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ahmad Barzin
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|