1
|
Dhahir SA, Braihi AJ, Habeeb SA. Comparative Analysis of Hydrogel Adsorption/Desorption with and without Surfactants. Gels 2024; 10:251. [PMID: 38667670 PMCID: PMC11049081 DOI: 10.3390/gels10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In this particular study, a hydrogel known as SAP-1 was synthesized through the grafting of acrylic acid-co-acrylamide onto pullulan, resulting in the creation of Pul-g-Poly (acrylic acid-co-acrylamide). Additionally, a sponge hydrogel named SAP-2 was prepared by incorporating the surfactant sodium dodecyl benzene sulfonate (SDBS) into the hydrogel through free radical solution polymerization. To gain further insight into the composition and properties of the hydrogels, various techniques, such as Fourier transform infrared spectroscopy, hydrogen nuclear magnetic resonance (1H NMR), atomic absorption spectroscopy, and field emission scanning electron microscopy (FE-SEM), were employed. Conversely, the absorption kinetics and the equilibrium capacities of the prepared hydrogels were investigated and analyzed. The outcomes of the investigation indicated that each of the synthesized hydrogels exhibited considerable efficacy as adsorbents for cadmium (II), copper (II), and nickel (II) ions. In particular, SAP-2 gel displayed a remarkable cadmium (II) ion absorption ability, with a rate of 190.72 mg/g. Following closely, SAP-1 gel demonstrated the ability to absorb cadmium (II) ions at a rate of 146.9 mg/g and copper (II) ions at a rate of 154 mg/g. Notably, SAP-2 hydrogel demonstrated the ability to repeat the adsorption-desorption cycles three times for cadmium (II) ions, resulting in absorption capacities of 190.72 mg/g, 100.43 mg/g, and 19.64 mg/g for the first, second, and third cycles, respectively. Thus, based on the abovementioned results, it can be concluded that all the synthesized hydrogels possess promising potential as suitable candidates for the adsorption and desorption of cadmium (II), copper (II), and nickel (II) ions.
Collapse
Affiliation(s)
| | | | - Salih Abbas Habeeb
- Polymer and Petrochemical Engineering Department, College of Engineering Materials, University of Babylon, Babylon 51002, Iraq
| |
Collapse
|
2
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
4
|
Zhang H, Zhou Y, Xu C, Qin X, Guo Z, Wei H, Yu CY. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int J Biol Macromol 2022; 223:290-306. [PMID: 36347370 DOI: 10.1016/j.ijbiomac.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs)-based on various ionic polysaccharides, including chitosan, hyaluronic acid, and alginate have been frequently summarized for controlled release applications, however, most of the published reviews, to our knowledge, focused on the delivery of a single therapeutic agent. A comprehensive summarization of the co-delivery of multiple therapeutic agents by the ionic polysaccharides-based NPs, especially on the optimization of the polysaccharide structure for overcoming various extracellular and intracellular barriers toward maximized synergistic effects, to our knowledge, has been rarely explored so far. For this purpose, the strategies used for overcoming various extracellular and intracellular barriers in vivo were introduced first to provide guidance for the rational design of ionic polysaccharides-based NPs with desired features, including long-term circulation, enhanced cellular internalization, controllable drug/gene release, endosomal escape and improved nucleus localization. Next, four preparation strategies were summarized including three physical methods of polyelectrolyte complexation, ionic crosslinking, and self-assembly and a chemical conjugation approach. The challenges and future trends of this rapidly developing field were finally discussed in the concluding remarks. The important guidelines on the rational design of ionic polysaccharides-based NPs for maximized synergistic efficiency drawn in this review will promote the future generation and clinical translation of polysaccharides-based NPs for cancer therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenghui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Chirayil TJ, Kumar GSV. Sorafenib-Entrapped, Self-Assembled Pullulan–Stearic Acid Biopolymer-Derived Drug Delivery System to PLC/PRF/5 Hepatocellular Carcinoma Model. Int J Nanomedicine 2022; 17:5099-5116. [PMID: 36340185 PMCID: PMC9635392 DOI: 10.2147/ijn.s377354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose This study aimed to design a prototypic drug delivery system (DDS) made of an amphiphilic, pullulan (Pull)-derived biodegradable polymer for targeting the asialoglycoprotein receptor (ASGPR) overexpressed in HCC. Stearic acid (SA) was conjugated to increase the hydrophobicity of pullulan (Pull-SA). Methods Pullulan (Pull) was linked to stearic acid (SA) after functional group modifications via EDC/NHS chemistry and characterized. Sorafenib tosylate (SRFT) was entrapped in pullulan–stearic acid nanoparticles (Pull-SA-SRFT) and its particle size, zeta potential, entrapment efficiency (EE), loading capacity (LC), and release efficiency was measured. The competence of Pull-SA-SRFT over SRFT in vitro was assessed using the ASGPR over-expressing PLC/PRF/5 hepatocellular carcinoma (HCC) cell line. This was done by studying cytotoxicity by MTT assay and chromosome condensation assay, early apoptosis by annexin-Pi staining, and late apoptosis by live–dead assay. The cellular uptake study was performed by incorporating coumarin-6 (C6) fluorophore in place of SRFT in Pull-SA conjugates. A biodistribution study was conducted in Swiss-albino mice to assess the biocompatibility and targeting properties of SRFT and Pull-SA-SRFT to the liver and other organs at 1, 6, 24, and 48 h. Results The characterization studies of the copolymer confirmed the successful conjugation of Pull-SA. The self-assembled amphiphilic nanocarrier could proficiently entrap the hydrophobic drug SRFT to obtain an entrapment efficiency of 95.6% (Pull-SA-SRFT). Characterization of the synthesized nanoparticles exhibited highly desirable nanoparticle characteristics. In vitro, apoptotic studies urged that Pull-SA-SRFT nanoparticle was delivered more efficiently to HCC than SRFT. The cellular uptake study performed, gave propitious results in 4 hrs. The biodistribution study conducted in immunocompetent mice suggested that Pull-SA-SRFT was delivered more than SRFT to the liver when compared to other organs, and that the system was biocompatible. Conclusion Pull-SA-SRFT is a promisingly safe, biodegradable, cell-specific nanocarrier and a potential candidate to target hydrophobic drugs to HCC.
Collapse
Affiliation(s)
- Teena Jacob Chirayil
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Correspondence: G S Vinod Kumar, Tel +91 471 2781217, Email
| |
Collapse
|
6
|
Akib AA, Shakil R, Rumon MMH, Roy CK, Chowdhury EH, Chowdhury AN. Natural and Synthetic Micelles for Delivery of Small Molecule Drugs, Imaging Agents and Nucleic Acids. Curr Pharm Des 2022; 28:1389-1405. [PMID: 35524674 DOI: 10.2174/1381612828666220506135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
The poor solubility, lack of targetability, quick renal clearance, and degradability of many therapeutic and imaging agents strongly limit their applications inside the human body. Amphiphilic copolymers having self-assembling properties can form core-shell structures called micelles, a promising nanocarrier for hydrophobic drugs, plasmid DNA, oligonucleotides, small interfering RNAs (siRNAs) and imaging agents. Fabrication of micelles loaded with different pharmaceutical agents provides numerous advantages including therapeutic efficacy, diagnostic sensitivity, and controlled release to the desired tissues. Moreover, due to their smaller particle size (10-100 nm) and modified surfaces with different functional groups (such as ligands) help them to accumulate easily in the target location, enhancing cellular uptake and reducing unwanted side effects. Furthermore, the release of the encapsulated agents may also be triggered from stimuli-sensitive micelles at different physiological conditions or by an external stimulus. In this review article, we discuss the recent advancement in formulating and targeting different natural and synthetic micelles including block copolymer micelles, cationic micelles, and dendrimers-, polysaccharide- and protein-based micelles for the delivery of different therapeutic and diagnostic agents. Finally, their applications, outcomes, and future perspectives have been summarized.
Collapse
Affiliation(s)
- Anwarul Azim Akib
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ragib Shakil
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Chanchal Kumar Roy
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Al-Nakib Chowdhury
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| |
Collapse
|
7
|
Ganie SA, Rather LJ, Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Hydrophobically Grafted Pullulan Nanocarriers for Percutaneous Delivery: Preparation and Preliminary In Vitro Characterisation. Polymers (Basel) 2021; 13:polym13172852. [PMID: 34502895 PMCID: PMC8434112 DOI: 10.3390/polym13172852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/27/2022] Open
Abstract
Polymeric colloidal nanocarriers formulated from hydrophobically grafted carbohydrates have been the subject of intensive research due to their potential to increase the percutaneous penetration of hydrophilic actives. To this goal, a series of hydrophobically grafted pullulan (BMO-PUL) derivatives with varying degree of grafting (5–64%) was prepared through functionalisation with 2-(butoxymethyl)oxirane. The results demonstrated that monodispersed BMO-PUL nanocarriers (size range 125–185 nm) could be easily prepared via nanoprecipitation; they exhibit close-to-spherical morphology and adequate stability at physiologically relevant pH. The critical micellar concentration of BMO-PUL was found to be inversely proportional to their molecular weight (Mw) and degree of grafting (DG), with values of 60 mg/L and 40 mg/L for DG of 12.6% and 33.8%, respectively. The polymeric nanocarriers were loaded with the low Mw hydrophilic active α-arbutin (16% loading), and the release of this active was studied at varying pH values (5 and 7), with a slightly faster release observed in acidic conditions; the release profiles can be best described by a first-order kinetic model. In vitro investigations of BMO-PUL nanocarriers (concentration range 0.1–4 mg/mL) using immortalised skin human keratinocytes cells (HaCaT) evidenced their lack of toxicity, with more than 85% cell viability after 24 h. A four-fold enhance in arbutin permeation through HaCaT monolayers was recorded when the active was encapsulated within the BMO-PUL nanocarriers. Altogether, the results obtained from the in vitro studies highlighted the potential of BMO-PUL nanocarriers for percutaneous delivery applications, which would warrant further investigation in vivo.
Collapse
|
9
|
Kellert M, Friedrichs JSJ, Ullrich NA, Feinhals A, Tepper J, Lönnecke P, Hey-Hawkins E. Modular Synthetic Approach to Carboranyl‒Biomolecules Conjugates. Molecules 2021; 26:2057. [PMID: 33916755 PMCID: PMC8038343 DOI: 10.3390/molecules26072057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (J.-S.J.F.); (N.A.U.); (A.F.); (J.T.); (P.L.)
| |
Collapse
|
10
|
Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021; 13:477. [PMID: 33540922 PMCID: PMC7867356 DOI: 10.3390/polym13030477] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The broad diversity of structures and the presence of numerous functional groups available for chemical modifications represent an enormous advantage for the development of safe, non-toxic, and cost-effective micellar drug delivery systems (DDS) based on natural biopolymers, such as polysaccharides, proteins, and peptides. Different drug-loading methods are used for the preparation of these micellar systems, but it appeared that dialysis is generally recommended, as it avoids the formation of large micellar aggregates. Moreover, the preparation method has an important influence on micellar size, morphology, and drug loading efficiency. The small size allows the passive accumulation of these micellar systems via the permeability and retention effect. Natural biopolymer-based micellar DDS are high-value biomaterials characterized by good compatibility, biodegradability, long blood circulation time, non-toxicity, non-immunogenicity, and high drug loading, and they are biodegraded to non-toxic products that are easily assimilated by the human body. Even if some recent studies reported better antitumoral effects for the micellar DDS based on polysaccharides than for commercial formulations, their clinical use is not yet generalized. This review is focused on the studies from the last decade concerning the preparation as well as the colloidal and biological characterization of micellar DDS based on natural biopolymers.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
| |
Collapse
|
11
|
Sun F, Guo J, Liu Y, Yu Y. Preparation and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/pullulan-gelatin electrospun nanofibers with shell-core structure. ACTA ACUST UNITED AC 2020; 15:045023. [PMID: 32155607 DOI: 10.1088/1748-605x/ab7e7a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, hydrophilic pullulan, which is favorable for cell adhesion, proliferation, and differentiation, was selected as a modifier for the preparation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB))/pullulan nanofibers via electrospinning to improve the biocompatibility of P(3HB-co-4HB) and increase the drug loading of composite fibers. Alkyl polyglycoside was used as the emulsifying agent to promote emulsification and stabilize the P(3HB-co-4HB)/pullulan composite solution. Drug-loading property of the nanofibers with a shell-core structure is increased because gelatin was not formed into fibers via electrospinning, thereby forming a stable drug-containing gelatin solution in the core layer. Finally, P(3HB-co-4HB)/pullulan-gelatin shell-core nanofibers were prepared. The intermolecular interaction, morphology, crystallization properties, mechanical properties, morphology, sustained release, and biocompatibility of composite nanofibers were characterized. Results show that the crystallization property of P(3HB-co-4HB)/pullulan composite nanofibers increases continuously with an increase in the pullulan content. As the pullulan content increases, the strain and stress of P(3HB-co-4HB)/pullulan nanofibers increase initially and decrease later. At the mass ratio of P(3HB-co-4HB) to pullulan of 10:2, P(3HB-co-4HB)/pullulan composite nanofibers exhibit a uniform morphology with an average diameter of 590 nm and porosity of 70.71%. At this mass ratio, the P(3HB-co-4HB)/pullulan-gelatin/drug shell-core structure, which sustained a release effect for more than 180 h, has potential applications as biomaterials without cytotoxicity.
Collapse
Affiliation(s)
- Fanchen Sun
- Dalian Polytechnic University, Liaoning 116034, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Plucinski A, Willersinn J, Lira RB, Dimova R, Schmidt BVKJ. Aggregation and Crosslinking of Poly(
N,N
‐dimethylacrylamide)‐
b
‐pullulan Double Hydrophilic Block Copolymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alexander Plucinski
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| | - Jochen Willersinn
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| | - Rafael B. Lira
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- Moleculaire BiofysicaZernike Instituut Rijksuniversiteit Groningen Groningen Netherlands
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| | - Bernhard V. K. J. Schmidt
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
13
|
Pishavar E, Ramezani M, Hashemi M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2019; 45:1931-1939. [PMID: 31609130 DOI: 10.1080/03639045.2019.1680995] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One strategy for cancer treatment is combination therapy using nanoparticles (NPs), which has resulted in enhanced anti-cancer effects and reduced cytotoxicity of therapeutic agents. Polyamidoamine dendrimer (PAMAM) has attracted considerable attention because of its potential applications ranging from drug delivery to molecular encapsulation and gene therapy. In this study, PAMAM G5 modified with cholesteryl chloroformate and alkyl-PEG was applied for co-delivery of doxorubicin (DOX) and plasmid encoding TRAIL into colon cancer cells, in vitro and in vivo. The results showed DOX was efficiently encapsulated in modified carrier (M-PAMAM) with loading level about 90%, and the resulting DOX-loaded M-PAMAM complexed with TRAIL plasmid showed much stronger antitumor effect than M-PAMAM containing DOX or TRAIL plasmid. On the other hand, the obtained results demonstrated that the treatment of mice bearing C26 colon carcinoma with this developed co-delivery system significantly decreased tumor growth rate. Thus, this modified PAMAM G5 can be considered as a potential carrier for co-delivery of drug and gene in cancer therapy.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmacutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmacutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Grigoras AG. Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. ENVIRONMENTAL CHEMISTRY LETTERS 2019; 17:1209-1223. [DOI: 10.1007/s10311-019-00862-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 01/03/2025]
|
15
|
Drug Delivery Systems Based on Pullulan Polysaccharides and Their Derivatives. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-01881-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Xia J, Wang J, Wang X, Qian M, Zhang L, Chen Q. Ultrasound-Responsive Nanoparticulate for Selective Amplification of Chemotherapeutic Potency for Ablation of Solid Tumors. Bioconjug Chem 2018; 29:3467-3475. [DOI: 10.1021/acs.bioconjchem.8b00626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Hong SJ, Ahn MH, Sangshetti J, Choung PH, Arote RB. Sugar-based gene delivery systems: Current knowledge and new perspectives. Carbohydr Polym 2018; 181:1180-1193. [DOI: 10.1016/j.carbpol.2017.11.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
|
18
|
Willersinn J, Schmidt BVKJ. Pure hydrophilic block copolymer vesicles with redox- and pH-cleavable crosslinks. Polym Chem 2018. [DOI: 10.1039/c7py01214d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation and stimuli cleavable crosslinking of completely water drained double hydrophilic block copolymer vesicles is presented.
Collapse
Affiliation(s)
- Jochen Willersinn
- Max-Planck Institute of Colloids and Interfaces; Department of Colloid Chemistry
- 14476 Potsdam
- Germany
| | - Bernhard V. K. J. Schmidt
- Max-Planck Institute of Colloids and Interfaces; Department of Colloid Chemistry
- 14476 Potsdam
- Germany
| |
Collapse
|
19
|
Liu J, He J, Zhang M, Xu G, Ni P. A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy. J Mater Chem B 2018; 6:3262-3273. [DOI: 10.1039/c8tb00746b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hybrid micelles composed of polymeric prodrug and gene carrier were constructed by polyphosphoester-based co-delivery system for lung cancer therapy.
Collapse
Affiliation(s)
- Jie Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- P. R. China
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| |
Collapse
|
20
|
Regioselective synthesis of 5-aminopyrazoles from reactions of amidrazones with activated nitriles: NMR investigation and X-ray structural analysis. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells. J Colloid Interface Sci 2017; 498:170-181. [DOI: 10.1016/j.jcis.2017.03.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
|
22
|
Lee IW, Li J, Chen X, Park HJ. Fabrication of electrospun antioxidant nanofibers by rutin-pluronic solid dispersions for enhanced solubility. J Appl Polym Sci 2017. [DOI: 10.1002/app.44859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Il Woo Lee
- College of Life Sciences and Biotechnology; Korea University; 5-Ka, Anam-Dong, Sungbuk-Ku Seoul 136-701 Republic of Korea
| | - Jinglei Li
- College of Biotechnology and Food Engineering; Hefei University of Technology; Hefei 230009 China
| | - Xiguang Chen
- College of Marine Life Science; Ocean University of China; Qingdao Shandong 266003 People's Republic of China
| | - Hyun Jin Park
- College of Life Sciences and Biotechnology; Korea University; 5-Ka, Anam-Dong, Sungbuk-Ku Seoul 136-701 Republic of Korea
| |
Collapse
|
23
|
Chen L, Ji F, Bao Y, Xia J, Guo L, Wang J, Li Y. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:418-429. [DOI: 10.1016/j.msec.2016.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/01/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023]
|