1
|
Zhou T, Choi HW, Jabbour G. Ultrathin Freestanding Nanocellulose Film Prepared from TEMPO-Mediated Oxidation and Homogenized Hydrogel. ACS OMEGA 2024; 9:21798-21804. [PMID: 38799327 PMCID: PMC11112707 DOI: 10.1021/acsomega.3c08062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
This paper presents a versatile method to fabricate ultrathin nanofibrillated cellulose (NFC) films as thin as 800 nm by blade coating, which is compatible with a roll-to-roll process on a large scale. Our approach allows obtaining a dried nanocellulose film within a span of 1 h subsequent to 2,2,6,6-tetramethylpiperidine-1-oxyl radical-assisted oxidation and homogenization procedures. One of the thinnest freestanding NFC films with a thickness of 800 nm is achieved using a blade coating of nanocellulose after 72 h of oxidation followed by homogenization with a channel size of 65 μm. Incorporating water-soluble CdTe core-type quantum dots into the nanocellulose film led to a uniform emission under 385 nm UV irradiation, indicating excellent material compatibility. We anticipate nanocellulose developed in our study to be beneficial in biomimicry flying objects, environmentally friendly encapsulation, color filters, and energy storage device membranes, to name a few.
Collapse
Affiliation(s)
- Tianlei Zhou
- Department
of Chemical and Materials Engineering, University
of Nevada, Reno, 1664
N. Virginia Street, Reno, Nevada 89557, United States
- Kaneka
US Material Research Center (KMR), Kaneka
Americas Holding, Inc., 34801 Campus Dr., Fremont, California 94555, United States
| | - Hyung Woo Choi
- Department
of Chemical and Materials Engineering, University
of Nevada, Reno, 1664
N. Virginia Street, Reno, Nevada 89557, United States
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Ghassan Jabbour
- Department
of Chemical and Materials Engineering, University
of Nevada, Reno, 1664
N. Virginia Street, Reno, Nevada 89557, United States
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Leow Y, Boo YJ, Lin M, Tan YC, Goh RZR, Zhu Q, Loh XJ, Xue K, Kai D. Coconut husk-derived nanocellulose as reinforcing additives in thermal-responsive hydrogels. Carbohydr Polym 2024; 323:121453. [PMID: 37940313 DOI: 10.1016/j.carbpol.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose has been widely used as a reinforcing agent for hydrogel systems, but its functions on thermal responsive hydrogels are rarely investigated. In this study, we extracted cellulose nanofibers (CNFs) from coconut biomass (coir fibers and piths, respectively) and aimed to study their effects on the material properties on a new class of thermogel (poly(PCL/PEG/PPG urethane). The CNFs extracted from fiber (FF) and piths (FP) showed different morphology and fiber lengths. FF are uniformed individual fibrous networks with a fiber length of 664 ± 416 nm, while FP display a hybrid structure consisting of individual fiber and large bundles with a relative shorter fiber length of 443 ± 184 nm. Integrating both CNFs into thermogels remained the thermal-responsive characteristics with an enhanced rheological property. The results showed that gels with FF resulted in a higher storage modulus and lower Tan δ value compared to those with FP, indicating that the CNFs with a longer length could form a more intertwined network interacting with the thermogel matrix. Furthermore, we demonstrated the improved capabilities of the nanocomposite thermogels for sustained drug delivery in vitro. This study not only value-adds lignocellulose valorization but also elevates the versatility of thermogels.
Collapse
Affiliation(s)
- Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Ying Chuan Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Rubayn Zhi Rong Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
3
|
Kim YH, Kim HJ, Yoon KS, Rhim JW. Cellulose nanofiber/deacetylated quaternary chitosan composite packaging film for growth inhibition of Listeria monocytogenes in raw salmon. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Gupta N, Mahur BK, Izrayeel AMD, Ahuja A, Rastogi VK. Biomass conversion of agricultural waste residues for different applications: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73622-73647. [PMID: 36071366 DOI: 10.1007/s11356-022-22802-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Agricultural waste residues (agro-waste) are the source of carbohydrates that generally go in vain or remain unused despite their interesting morphological, chemical, and mechanical properties. With rapid urbanization, there is a need to valorize this waste due to limited non-renewable resources. Utilizing agro-waste also prevents the problems like burning and inefficient disposal that otherwise lead to immense pollution worldwide. In addition, conversion of biomass to value-added products like earthen cups, weaving baskets, and bricks is equally beneficial for the rural population as it provides secondary income, creates jobs, and improves rural people's lifestyles. This review paper will discuss an overview of different applications utilizing agro-waste residues. In particular, agro-wastes used as construction material, bio-fertilizers, pulp and paper products, packaging products, tableware, heating applications, biocomposites, nano-cellulosic materials, soil stabilizers, bioplastics, fire-retardant additive, dye removal, and biofuels will be summarized. Finally, several commercially available agro-waste products will also be discussed, emphasizing the circular economy.
Collapse
Affiliation(s)
- Nitin Gupta
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Bhupender Kumar Mahur
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Arihant Ahuja
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vibhore Kumar Rastogi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
5
|
Fluorescent cellulosic composites based on carbon dots: Recent advances, developments, and applications. Carbohydr Polym 2022; 294:119768. [DOI: 10.1016/j.carbpol.2022.119768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
6
|
Cao S, Liu P, Miao M, Fang J, Feng X. TEMPO-oxidized nanofibrillated cellulose assisted exfoliation of MoS2/graphene composites for flexible paper-anodes. Chem Asian J 2022; 17:e202200257. [PMID: 35510935 DOI: 10.1002/asia.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/01/2022] [Indexed: 11/11/2022]
Abstract
TEMPO-oxidized nanofibrillated cellulose (ONFC) with charged carboxyl groups is introduced for the efficient exfoliation of two-dimensional (2D) MoS2/graphene composites. As an effective dispersant agent, ONFC can be easily absorbed between the adjacent layers, so as to prevent the accumulation of the exfoliated nanosheets. With the assistance of charged ONFC, the exfoliated MoS2/graphene is gradually increased in the aqueous dispersions with the elongated sonication time. After dewatering, self-standing MoS2/Graphene/ONFC/CNTs composite films are rationally constructed using ONFC as flexible fibrous skeleton, and CNTs/graphene as 1D/2D interpenetrating electrical networks. Ultrathin MoS2 nanosheets anchored on the 1D/2D heterogeneous networks is directly acted as an ideal paper-anode for lithium-ion batteries (LIBs) without using traditional metallic current collector. The self-standing flexible electrode materials based on natural cellulose will promote the future green electronics with high flexibility, miniaturization, and increased portability.
Collapse
Affiliation(s)
- Shaomei Cao
- Shanghai University, College of Science, CHINA
| | - Panpan Liu
- Shanghai University, College of Science, CHINA
| | - Miao Miao
- Shanghai University, College of Science, CHINA
| | | | - Xin Feng
- Shanghai University, Nano Science and Technology Research Center, 99 Shangda Rd., Shanghai, CHINA
| |
Collapse
|
7
|
Ogundare SA, Moodley V, Amaku JF, Ogunmoye AO, Atewolara-Odule OC, Olubomehin OO, Awokoya KN, Sanyaolu NO, Ibikunle AA, van Zyl WE. Nanocrystalline cellulose derived from melon seed shell (Citrullus colocynthis L.) for reduction and stabilization of silver nanoparticles: Synthesis and catalytic activity. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Chu Y, Sun Y, Wu W, Xiao H. Dispersion Properties of Nanocellulose: A Review. Carbohydr Polym 2020; 250:116892. [DOI: 10.1016/j.carbpol.2020.116892] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/28/2022]
|
9
|
Zhu L, Shen D, Wu C, Gu S. State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04760] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingli Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT7 1NN, U.K
| | - Sai Gu
- Faculty of Engineering and Physical Sciences, University of Surrey, Guilford GU2 7XH, U.K
| |
Collapse
|
10
|
Dias OAT, Konar S, Leão AL, Yang W, Tjong J, Sain M. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Front Chem 2020; 8:420. [PMID: 32528931 PMCID: PMC7253724 DOI: 10.3389/fchem.2020.00420] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022] Open
Abstract
Novel and unique applications of nanocellulose are largely driven by the functional attributes governed by its structural and physicochemical features including excellent mechanical properties and biocompatibility. In recent years, thousands of groundbreaking works have helped in the development of targeted functional nanocellulose for conductive, optical, luminescent materials, and other applications. The growing demand for sustainable and renewable materials has led to the rapid development of greener methods for the design and fabrication of high-performance green nanomaterials with multiple features, and consequently new challenges and opportunities. The present review article discusses historical developments, various fabrication and functionalization methods, the current stage, and the prospects of flexible energy and hybrid electronics based on nanocellulose.
Collapse
Affiliation(s)
| | - Samir Konar
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Alcides Lopes Leão
- College of Agricultural Sciences, São Paulo State University (Unesp), São Paulo, Brazil
| | - Weimin Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jimi Tjong
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Zhang Z, Liu G, Li X, Zhang S, Lü X, Wang Y. Design and Synthesis of Fluorescent Nanocelluloses for Sensing and Bioimaging Applications. Chempluschem 2020; 85:487-502. [DOI: 10.1002/cplu.201900746] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education Shaanxi Key Laboratory of Physico-Inorganic Chemistry College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 Shaanxi China
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Gang Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Xinping Li
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Xingqiang Lü
- Chemical Engineering InstituteNorthwest University Xi'an 710127 Shaanxi China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education Shaanxi Key Laboratory of Physico-Inorganic Chemistry College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 Shaanxi China
| |
Collapse
|
12
|
Zhang Q, Zhang L, Wu W, Xiao H. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydr Polym 2019; 229:115454. [PMID: 31826470 DOI: 10.1016/j.carbpol.2019.115454] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023]
Abstract
Nanocellulose obtained from natural renewable resources has attracted enormous interests owing to its unique morphological characteristics, excellent mechanical strength, biocompatibility and biodegradability for a variety of applications in many fields. The template structure, high specific surface area, and active surface groups make it feasible to conduct surface modification and accommodate various nano-structured materials via physical or chemical deposition. The review presented herein focuses on the methodologies of loading different nano-structured materials on nanocellulose, including metals, nanocarbons, oxides, mineral salt, quantum dots and nonmetallic elements; and further describes the applications of nanocellulose composites in the fields of catalysis, optical electronic devices, biomedicine, sensors, composite reinforcement, photoswitching, flame retardancy, and oil/water separation.
Collapse
Affiliation(s)
- Qing Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
13
|
Solution-processed flexible paper-electrode for lithium-ion batteries based on MoS2 nanosheets exfoliated with cellulose nanofibrils. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Luo J, Zhang M, Yang B, Liu G, Tan J, Nie J, Song S. A promising transparent and UV-shielding composite film prepared by aramid nanofibers and nanofibrillated cellulose. Carbohydr Polym 2019; 203:110-118. [DOI: 10.1016/j.carbpol.2018.09.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022]
|
15
|
Abdul Rashid ES, Muhd Julkapli N, Yehye WA. Nanocellulose reinforced as green agent in polymer matrix composites applications. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erfan Suryani Abdul Rashid
- Nanotechnology and Catalysis Research Centre (NANOCAT); University of Malaya; Block A, Level 3, Institute of Postgraduate Studies Building Kuala Lumpur 50603 Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology and Catalysis Research Centre (NANOCAT); University of Malaya; Block A, Level 3, Institute of Postgraduate Studies Building Kuala Lumpur 50603 Malaysia
| | - Wageeh A. Yehye
- Nanotechnology and Catalysis Research Centre (NANOCAT); University of Malaya; Block A, Level 3, Institute of Postgraduate Studies Building Kuala Lumpur 50603 Malaysia
| |
Collapse
|
16
|
Navarro JRG, Edlund U. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils. Biomacromolecules 2017; 18:1947-1955. [DOI: 10.1021/acs.biomac.7b00398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien R. G. Navarro
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Ulrica Edlund
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| |
Collapse
|
17
|
Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydr Polym 2017; 161:253-260. [DOI: 10.1016/j.carbpol.2017.01.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/21/2023]
|
18
|
Pierre G, Punta C, Delattre C, Melone L, Dubessay P, Fiorati A, Pastori N, Galante YM, Michaud P. TEMPO-mediated oxidation of polysaccharides: An ongoing story. Carbohydr Polym 2017; 165:71-85. [PMID: 28363578 DOI: 10.1016/j.carbpol.2017.02.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 01/30/2023]
Abstract
The oxidation of natural polysaccharides by TEMPO has become by now an "old chemical reaction" which led to numerous studies mainly conducted on cellulose. This regioselective oxidation of primary alcohol groups of neutral polysaccharides has generated a new class of polyuronides not identified before in nature, even if the discovery of enzymes promoting an analogous oxidation has been more recently reported. Around the same time, the scientific community discovered the surprising biological and techno-functional properties of these anionic macromolecules with a high potential of application in numerous industrial fields. The objective of this review is to establish the state of the art of TEMPO chemistry applied to polysaccharide oxidation, its history, the resulting products, their applications and the associated modifying enzymes.
Collapse
Affiliation(s)
- Guillaume Pierre
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France.
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Cédric Delattre
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy; Università degli Studi e-Campus, Via Isimbardi 10, 22060, Novedrate, Como, Italy
| | - Pascal Dubessay
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Nadia Pastori
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Yves M Galante
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131, Milano, Italy
| | - Philippe Michaud
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| |
Collapse
|