1
|
Ojo OA, Ogunlakin AD, Maimako RF, Gyebi GA, Olowosoke CB, Taiwo OA, Elebiyo TC, Adeniyi D, David B, Iyobhebhe M, Adetunji JB, Ayokunle DI, Ojo AB, Mothana RA, Alanzi AR. Therapeutic Study of Cinnamic Acid Derivative for Oxidative Stress Ablation: The Computational and Experimental Answers. Molecules 2023; 28:7425. [PMID: 37959844 PMCID: PMC10648207 DOI: 10.3390/molecules28217425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed to examine the therapeutic activity of the cinnamic acid derivative KAD-7 (N'-(2,4-dichlorobenzylidene)-3-(4-methoxyphenyl) acrylohydrazide) on Fe2+-induced oxidative hepatic injury via experimental and computational models. In addition, the role of ATPase and ectonucleoside triphosphate diphosphohydrolase (ENTPDase) in the coordination of cellular signals is speculated upon to proffer suitable therapeutics for metabolic stress disorder upon their inhibition. While we know little about therapeutics with flexible dual inhibitors for these protein targets, this study was designed to screen KAD-7's (N'-(2,4-dichlorobenzylidene)-3-(4-methoxyphenyl) acrylohydrazide) inhibitory potential for both protein targets. We induced oxidative hepatic damage via the incubation of hepatic tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C. We achieved the treatment by incubating the hepatic tissues with KAD-7 under the same conditions. The catalase (CAT), glutathione (GSH), malondialdehyde (MDA), ATPase, and ENTPDase activity were all measured in the tissues. We predicted how the drug candidate would work against ATPase and ENTPDase targets using molecular methods. When hepatic injury was induced, there was a significant decrease in the levels of the GSH, CAT, and ENTPDase (p < 0.05) activities. In contrast, we found a noticeable rise in the MDA levels and ATPase activity. KAD-7 therapy resulted in lower levels of these activities overall (p < 0.05), as compared to the control levels. We found the compound to have a strong affinity for ATPase (-7.1 kcal/mol) and ENTPDase (-7.4 kcal/mol), and a better chemical reactivity than quercetin. It also met all drug-likeness parameters. Our study shows that KAD-7 can protect the liver from damage caused by FeSO4 by reducing oxidative stress and purinergic actions. Our studies indicate that KAD-7 could be developed as a therapeutic option since it can flexibly inhibit both ATPase and ENTPDase.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Good Health and Wellbeing Research Cluster, Bowen University, Iwo 232102, Nigeria; (A.D.O.); (D.A.); (B.D.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Good Health and Wellbeing Research Cluster, Bowen University, Iwo 232102, Nigeria; (A.D.O.); (D.A.); (B.D.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Rotdelmwa Filibis Maimako
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Nigeria; (R.F.M.); (T.C.E.); (M.I.)
| | - Gideon Ampoma Gyebi
- Natural Products and Structural (Bio-Chem)-Informatics Research Laboratory (NpsBC-RI), Department of Biochemistry, Bingham University, Karu 961105, Nigeria;
| | - Christopher Busayo Olowosoke
- Department of Biotechnology, Federal University of Technology, PMB 704 Futa Road, Akure 340252, Nigeria;
- Department of Biotechnology, Chrisland University, Abeokuta 110118, Nigeria
| | | | | | - David Adeniyi
- Good Health and Wellbeing Research Cluster, Bowen University, Iwo 232102, Nigeria; (A.D.O.); (D.A.); (B.D.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Bolaji David
- Good Health and Wellbeing Research Cluster, Bowen University, Iwo 232102, Nigeria; (A.D.O.); (D.A.); (B.D.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Matthew Iyobhebhe
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Nigeria; (R.F.M.); (T.C.E.); (M.I.)
| | | | | | - Adebola Busola Ojo
- Department of Biochemistry, Ekiti State University, Ado-Ekiti 362103, Nigeria;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (A.R.A.)
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (A.R.A.)
| |
Collapse
|
2
|
A family of amphiphilic dioxidovanadium(V) hydrazone complexes as potent carbonic anhydrase inhibitors along with anti-diabetic and cytotoxic activities. Biometals 2022; 35:499-517. [PMID: 35355153 DOI: 10.1007/s10534-022-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
A family of dioxidovanadium(V) complexes (1-4) of the type [Na(H2O)x]+[VVO2(HL1-4)]- (x = 4, 4.5 and 7) where HL2- represents the dianionic form of 2-hydroxybenzoylhydrazone of 2-hydroxyacetophenone (H2L1, complex 1), 2-hydroxy-5-methylacetophenone (H2L2, complex 2), 2-hydroxy-5-methoxyacetophenone (H2L3, complex 3) and 2-hydroxy-5-chloroacetophenone (H2L4, complex 4), have been synthesized and characterized by analytical and spectral methods. These complexes exhibited the potential abilities to suppress the erythrocytes carbonic anhydrase enzymatic activity in type 1 and type 2 diabetic patients (in vitro), promising antidiabetic activity against T2 diabetic mice (in vivo). They also exhibited significant cytotoxic activity against cervical cancer (SiHa) cells (in vitro) as the IC50 value of complexes 1, 2 and 4 is substantially lower than the value found for cisplatin while that of 3 is comparable and follow the order: 4 < 1 < 2 < 3 and can kill the cells by apoptosis via the generation of reactive oxygen species (ROS). The complexes are soluble both in water and octanol media and also non-toxic at working concentrations. The antidiabetic activity of these four complexes follows the order: 4 > 2 > 1 > 3 while both the carbonic anhydrase and cytotoxic activity follow the order: 4 > 1 > 2 > 3 suggesting that complex 4, containing electron withdrawing Cl atom is the most reactive while 3 with electron donating OCH3 group is the least reactive species. The molecular docking study on hCA-I and hCA-II demonstrates that complexes interact via hydrogen bonding as well as different types of π-stacking.
Collapse
|
3
|
Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. INORGANICS 2021. [DOI: 10.3390/inorganics9020017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In aqueous media, VIV- and VV-ions and compounds undergo chemical changes such as hydrolysis, ligand exchange and redox reactions that depend on pH and concentration of the vanadium species, and on the nature of the several components present. In particular, the behaviour of vanadium compounds in biological fluids depends on their environment and on concentration of the many potential ligands present. However, when reporting the biological action of a particular complex, often the possibility of chemical changes occurring has been neglected, and the modifications of the complex added are not taken into account. In this work, we highlight that as soon as most vanadium(IV) and vanadium(V) compounds are dissolved in a biological media, they undergo several types of chemical transformations, and these changes are particularly extensive at the low concentrations normally used in biological experiments. We also emphasize that in case of a biochemical interaction or effect, to determine binding constants or the active species and/or propose mechanisms of action, it is essential to evaluate its speciation in the media where it is acting. This is because the vanadium complex no longer exists in its initial form.
Collapse
|
4
|
Öztürkkan Özbek FE, Uğurlu G, Kalay E, Necefoğlu H, Hökelek T. Theoretical and experimental assesment of structural, spectroscopic, electronic and nonlinear optical properties of two aroylhydrazone derivative. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Kothandan S, Sheela A. Design of oxoperoxovanadium(V) complexes and their DNA interaction studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1774752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Saraswathi Kothandan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - A. Sheela
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Yan X, Zhong S, Zhang H. The crystal structure of ( E)- N′-(1-(3-chloro-4-fluorophenyl) ethylidene)-2-hydroxybenzohydrazide, C 15H 12ClFN 2O 2. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C15H12ClFN2O2, monoclinic, P21/c (no. 14), a = 13.9210(13) Å, b = 13.2329(15) Å, c = 18.7191(19) Å, β = 126.250(2)°, V = 2780.9(5) Å3, Z = 8, R
gt(F) = 0.0499, wR
ref(F
2) = 0.1420, T = 293(2) K.
Collapse
Affiliation(s)
- Xifeng Yan
- East China University of Technology, School of Water Resources and Enviromental Engineering , 330013 Nanchang, Jiangxi , P.R. China
| | - Shibin Zhong
- Jiangxi University of Science and Technology, School of Architectural and Surverying and Mapping Engineering , 341000 Ganzhou, Jiangxi , P.R. China
- Jiangxi Provincial Archives of Natural Resources , 330025 Nanchang, Jiangxi , P.R. China
| | - Hong Zhang
- East China 263 Engineering Survey Institute of Nuclear Industry , 343100 Ji’an, Jiangxi , P.R. China
| |
Collapse
|
7
|
Biswas N, Bera S, Sepay N, Pal A, Halder T, Ray S, Acharyya S, Biswas AK, Drew MGB, Ghosh T. Simultaneous formation of non-oxidovanadium(iv) and oxidovanadium(v) complexes incorporating phenol-based hydrazone ligands in aerobic conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj06114b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of non-oxidovanadium(iv) complexes incorporating multidentate hydrazone ligands were synthesized through a thermodynamically unfavourable process along with oxidovanadium(v) species.
Collapse
Affiliation(s)
- Nirmalendu Biswas
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Sachinath Bera
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Amrita Pal
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| | - Tanmoy Halder
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Sudipta Ray
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Swarnali Acharyya
- Department of Pathology and Cell Biology
- Columbia University
- New York
- USA
| | - Anup Kumar Biswas
- Herbert Irving Comprehensive Cancer Centre
- Columbia University
- New York
- USA
| | | | - Tapas Ghosh
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| |
Collapse
|
8
|
Li Y, Xu L, Duan M, Wu J, Wang Y, Dong K, Han M, You Z. An acetohydroxamate-coordinated oxidovanadium(V) complex derived from pyridinohydrazone ligand with urease inhibitory activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Singh HK, Gupta RK, Singh SK, Rao DS, Prasad SK, Achalkumar AS, Singh B. Synthesis and self-assembly of aroylhydrazone based polycatenars: A structure-property correlation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Liu Y, Song X, Li S, Liu X, Tian J, Xu J, Yan S. Three pairs of enantiomers bearing mitochondria‐targeted TPP
+
groups as potential anti‐cancer agents. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yue Liu
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Xue‐Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of PharmacyTianjin Medical University Tianjin 300070 China
| | - Si‐Tong Li
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Xin Liu
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Jin‐Lei Tian
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| | - Jing‐Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of PharmacyTianjin Medical University Tianjin 300070 China
| | - Shi‐Ping Yan
- Department of ChemistryNankai University Tianjin 300071 People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin 300071 People's Republic of China
| |
Collapse
|
11
|
Biswas N, Bera S, Sepay N, Mukhopadhyay TK, Acharya K, Ghosh S, Acharyya S, Biswas AK, Drew MGB, Ghosh T. Synthesis, characterization, and cytotoxic and antimicrobial activities of mixed-ligand hydrazone complexes of variable valence VO z+ ( z = 2, 3). NEW J CHEM 2019. [DOI: 10.1039/c9nj04171k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mixed-ligand complexes of VO2+ and VO3+ motifs incorporating a family of hydrazone ligands were reported, which exhibited promising cytotoxic activity against lung cancer cell line and antimicrobial activity against four pathogenic bacterial stains.
Collapse
Affiliation(s)
- Nirmalendu Biswas
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Sachinath Bera
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Titas Kumar Mukhopadhyay
- Department of Spectroscopy
- Indian Association for the Cultivation of Science
- Jadavpur
- Kolkata-700032
- India
| | | | - Sandipta Ghosh
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Swarnali Acharyya
- Department of Pathology and Cell Biology
- Columbia University
- New York
- USA
| | - Anup Kumar Biswas
- Herbert Irving Comprehensive Cancer Centre
- Columbia University
- New York
- USA
| | | | - Tapas Ghosh
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| |
Collapse
|
12
|
Nitsche S, Schmitz S, Stirnat K, Sandleben A, Klein A. Controlling Nuclearity and Stereochemistry in Vanadyl(V) and Mixed Valent VIV/VVComplexes of Oxido-Pincer Pyridine-2,6-dimethanol Ligands. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Nitsche
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Simon Schmitz
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Kathrin Stirnat
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Aaron Sandleben
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Axel Klein
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| |
Collapse
|
13
|
Patra D, Paul S, Majumder I, Sepay N, Bera S, Kundu R, Drew MGB, Ghosh T. Exploring the effect of substituent in the hydrazone ligand of a family of μ-oxidodivanadium(v) hydrazone complexes on structure, DNA binding and anticancer activity. Dalton Trans 2018; 46:16276-16293. [PMID: 29138774 DOI: 10.1039/c7dt03585c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The reaction of 2-hydroxybenzoylhydrazine (H2bh) separately with equimolar amounts of [VIVO(aa)2] and [VIVO(ba)2] in CHCl3 afforded the complexes [VO3(HL1)2] (1) and [VO3(HL2)2] (2) respectively in good to excellent yield ((HL1)2- and (HL2)2- represent respectively the dianionic form of 2-hydroxybenzoylhydrazones of acetylacetone (H3L1) and benzoylacetone (H3L2) (general abbreviation H3L)). From X-ray structure analysis, the VV-O-VV angle was found to be ∼115° and 180° in 1 and 2 respectively. Upon one-electron reduction selectively at one V centre at an appropriate potential, each of 1 and 2 generated mixed-valence [(HL)VVO-(μ-O)-OVIV(HL)]- species 1A and 2A respectively, which showed valence delocalization at room temperature and localization at 77 K, and the VIV-O-VV bond angles were calculated to be 177.5° and 180° respectively. The intercalative mode of binding of the two complexes 1 and 2 with CT DNA has been suggested by UV-visible spectroscopy (Kb = 7.31 × 105 M-1 and 8.71 × 105 M-1 respectively for 1 and 2), fluorescence spectroscopy (Ksv = 6.85 × 105 M-1 and 8.53 × 105 M-1 respectively for 1 and 2) and circular dichroism spectroscopy. Such intercalative mode of binding of these two complexes with CT DNA and HPV DNA has also been confirmed by molecular docking study. Both complexes 1 and 2 exhibited promising anti-cancer activity against SiHa cervical cancer cells with IC50 values of 28 ± 0.5 μM and 25 ± 0.5 μM respectively for 24 h which is significantly better than that of widely used cisplatin (with IC50 value of 63.5 μM). Nuclear staining experiments reveal that these complexes kill the SiHa cells through apoptotic mode. It is interesting to note that these two complexes are non-toxic to normal T293 cell line. Complex 2 showed higher DNA binding ability with CT DNA and HPV DNA as well as better anti-cancer properties towards SiHa cervical cancer cells in comparison to complex 1, a fact which can be explained by considering the lower energy of LUMO (which favours electron transition from DNA to the metal complex) and also the higher surface area of complex 2 in comparison to complex 1 due to the presence of one extra electron-withdrawing phenyl group in the former.
Collapse
Affiliation(s)
- Debashis Patra
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Patra D, Paul S, Sepay N, Kundu R, Ghosh T. Structure-activity relationship on DNA binding and anticancer activities of a family of mixed-ligand oxidovanadium(V) hydrazone complexes. J Biomol Struct Dyn 2017; 36:4143-4155. [DOI: 10.1080/07391102.2017.1409652] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Debashis Patra
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Subhabrata Paul
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Tapas Ghosh
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| |
Collapse
|
16
|
Biswas N, Patra D, Mondal B, Bera S, Acharyya S, Biswas AK, Mukhopadhyay TK, Pal A, Drew MGB, Ghosh T. Exploring the effect of hydroxylic and non-hydroxylic solvents on the reaction of [V IVO(β-diketonate) 2] with 2-aminobenzoylhydrazide in aerobic and anaerobic conditions. Dalton Trans 2017; 46:10963-10985. [PMID: 28766668 DOI: 10.1039/c7dt01776f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Refluxing [VIVO(β-diketonate)2], namely [VIVO(acetylacetonate)2] and [VIVO(benzoylacetonate)2], separately with an equivalent or excess amount of 2-aminobenzoylhydrazide (ah) in laboratory grade (LG) CH3OH in aerobic conditions afforded non-oxidovanadium(iv) and oxidovanadium(v) complexes of the type [VIV(L1)2] (1), [VVO(L1)(OCH3)]2 (3) and [VIV(L2)2] (2), and [VVO(L2)(OCH3)] (4), respectively. (L1)2- and (L2)2- represent the dianionic forms of 2-aminobenzoylhydrazone of acetylacetone (H2L1) and benzoylacetone (H2L2), respectively, (general abbreviation, H2L), which was formed by the in situ condensation of ah with the respective coordinated [β-diketonate] in medium-to-good yield. The yield of different resulting products was dependent upon the ratio of ah to [VIVO(β-diketonate)2]. For example, the yield of 1 and 2 complexes increased significantly associated with a decrease in the amount of 3 and 4 with an increase in the molar ratio of ah. Upon replacing CH3OH by a non-hydroxylic solvent, LG CHCl3, the above reaction yielded only oxidovanadium(v) complexes of the type [VVO(L1)(OH)]2 (5), [VVO(L2)(OH)] (6) and [VO3(L)2] (7, 8) whereas, upon replacing CHCl3 by another non-hydroxylic solvent, namely LG CH3CN, only the respective [VO3(L)2] (7, 8) complex was isolated in 72-78% yield. However, upon performing the above reactions in the absence of air using dry CH3OH or dry CHCl3, only the respective [VIV(L)2] complex was obtained, suggesting that aerial oxygen was the oxidising agent and the type of pentavalent product formed was dependent upon the nature of solvent used. Complexes 3 and 4 were converted, respectively, to 7 and 8 on refluxing in LG CHCl3via the respective unstable complex 5 and 6. The DFT calculated change in internal energy (ΔE) for the reactions 2[VVO(L2)(OCH3)] + 2H2O → 2[VVO(L2)(OH)] + 2CH3OH and 2[VVO(L2)(OH)] → [VO3(L2)2] + H2O was, respectively, +3.61 and -7.42 kcal mol-1, suggesting that the [VVO(L2)(OH)] species was unstable and readily transformed to the stable [VO3(L2)2] complex. Upon one-electron reduction at an appropriate potential, each of 7 and 8 generated mixed-valence [(L)VVO-(μ-O)-OVIV(L)]- species, which showed valence-delocalisation at room temperature and localisation at 77 K. Some of the complexes showed a wide range of toxicity in a dose-dependent manner against lung cancer cells comparable with that observed with cis-platin.
Collapse
Affiliation(s)
- Nirmalendu Biswas
- Postgraduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
sardar S, Maity S, Pal S, Parvej H, Das N, Sepay N, Sarkar M, Halder UC. Facile synthesis and characterization of beta lactoglobulin–copper nanocomposites having antibacterial applications. RSC Adv 2016. [DOI: 10.1039/c6ra14162e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The synthesis of Cu0 nanoparticles and Cu–protein nanocomposites is a great challenge.
Collapse
Affiliation(s)
- Subrata sardar
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Sanhita Maity
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Sampa Pal
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Hasan Parvej
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Niloy Das
- Department of Chemistry
- Durgapur Govt. College
- Durgapur
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Manas Sarkar
- Department of Physics
- Jadavpur University
- Kolkata – 700032
- India
| | | |
Collapse
|