1
|
Esrafili MD. Low-temperature oxidation of methane mediated by Al-doped ZnO cluster and nanowire: a first-principles investigation. J Mol Model 2024; 30:370. [PMID: 39377948 DOI: 10.1007/s00894-024-06168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
CONTEXT First-principles calculations are performed to investigate the catalytic oxidation of methane by using N2O as an oxidizing agent over aluminum (Al)-doped Zn12O12 cluster and (Zn12O12)2 nanowire. The impact of Al impurity on the geometry, electronic structure, and surface reactivity of Zn12O12 and (Zn12O12)2 is thoroughly studied. Our study demonstrates that Al-doped ZnO systems have a better adsorption ability than the corresponding pristine counterparts. It is found that N2O molecule is initially decomposed on the Al site to provide the N2 molecule, and an Al-O intermediate which is an active species for the CH4 oxidation. The conversion of CH4 into CH3OH over AlZn11O12 and (AlZn11O12)2 requires an activation energy of 0.45 and 0.29 eV, respectively, indicating it can be easily performed at normal temperatures. Besides, the overoxidation of methanol into formaldehyde cannot take place over the AlZn11O12 and (AlZn11O12)2, due to the high energy barrier needed to dissociate C-H bond of the CH3O intermediate. METHOD Dispersion-corrected density functional theory calculations were performed through GGA-PBE exchange-correlation functional combined with a numerical double-ζ plus polarization (DNP) basis set as implemented in DMol3. To include the relativistic effects of core electrons of Zn atoms, DFT-semicore pseudopotentials were adopted. The DFT + D scheme proposed by Grimme was used to involve weak dispersion interactions within the DFT calculations. The reaction energy paths were generated by the minimum energy path calculations using the NEB method.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.
| |
Collapse
|
2
|
Vali SA, Markeb AA, Moral-Vico J, Font X, Sánchez A. Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2754. [PMID: 37887905 PMCID: PMC10609106 DOI: 10.3390/nano13202754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Methane and carbon dioxide are the main contributors to global warming, with the methane effect being 25 times more powerful than carbon dioxide. Although the sources of methane are diverse, it is a very volatile and explosive gas. One way to store the energy content of methane is through its conversion to methanol. Methanol is a liquid under ambient conditions, easy to transport, and, apart from its use as an energy source, it is a chemical platform that can serve as a starting material for the production of various higher-value products. Accordingly, the transformation of methane to methanol has been extensively studied in the literature, using traditional catalysts as different types of zeolites. However, in the last few years, a new generation of catalysts has emerged to carry out this transformation with higher conversion and selectivity, and more importantly, under mild temperature and pressure conditions. These new catalysts typically involve the use of a highly porous supporting material such as zeolite, or more recently, metal-organic frameworks (MOFs) and graphene, and metallic nanoparticles or a combination of different types of nanoparticles that are the core of the catalytic process. In this review, recent advances in the porous supports for nanoparticles used for methane oxidation to methanol under mild conditions are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Le TNM, Le TBN, Nguyen PT, Nguyen TT, Tran QN, Nguyen TT, Kawazoe Y, Phan TB, Nguyen DM. Insight into the direct conversion of methane to methanol on modified ZIF-204 from the perspective of DFT-based calculations. RSC Adv 2023; 13:15926-15933. [PMID: 37250213 PMCID: PMC10214002 DOI: 10.1039/d3ra02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Direct oxidation of methane over oxo-doped ZIF-204, a bio-mimetic metal-organic framework, is investigated under first-principles calculations based on density functional theory. In the pristine ZIF-204, the tetrahedral methane molecule anchors to an open monocopper site via the so-called η2 configuration with a physisorption energy of 0.24 eV. This weak binding arises from an electrostatic interaction between the negative charge of carbon in the methane molecule and the positive Cu2+ cation in the framework. In the modified ZIF-204, the doped oxo species is stabilized at the axial position of a CuN4-base square pyramid at a distance of 2.06 Å. The dative covalent bond between Cu and oxo is responsible for the formation energy of 1.06 eV. With the presence of the oxo group, the presenting of electrons in the O_pz orbital accounts for the adsorption of methane via hydrogen bonding with an adsorption energy of 0.30 eV. The methane oxidation can occur via either a concerted direct oxo insertion mechanism or a hydrogen-atom abstraction radical rebound mechanism. Calculations on transition-state barriers show that reactions via the concerted direct oxo insertion mechanism can happen without energy barriers. Concerning the hydrogen-atom abstraction radical rebound mechanism, the C-H bond dissociation of the CH4 molecule is barrierless, but the C-O bond recombination to form the CH3OH molecule occurs through a low barrier of 0.16 eV. These predictions suggest the modified ZIF-204 is a promising catalyst for methane oxidization.
Collapse
Affiliation(s)
- Thong Nguyen-Minh Le
- Center for Innovative Materials and Architectures Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Thu Bao Nguyen Le
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
- Department of Mathematics and Physics, University of Information Technology Ho Chi Minh City 700000 Viet Nam
| | - Phat Tan Nguyen
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
- Department of Theoretical Physics, University of Science Ho Chi Minh City 700000 Vietnam
| | - Trang Thuy Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University - Hanoi Hanoi 100000 Vietnam
| | - Quang Ngoc Tran
- Center for Innovative Materials and Architectures Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Toan The Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University - Hanoi Hanoi 100000 Vietnam
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University Sendai 980-8579 Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- School of Physics, Institute of Science, Suranaree University of Technology 111 University Avenue Nakhon Ratchasima 30000 Thailand
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Duc Manh Nguyen
- CCFE, United Kingdom Atomic Energy Authority Abingdon OX14 3DB UK
| |
Collapse
|
4
|
Yan Z, Xu H, Huang L, Fu H, Li S. Partial Oxidation of Methane to Methanol on the M-O-Ag/Graphene (M = Ag, Cu) Composite Catalyst: A DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2422-2434. [PMID: 36734609 DOI: 10.1021/acs.langmuir.2c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Partial oxidation of methane (CH4) to methanol (CH3OH) remains a great challenge in the field of catalysis due to its low selectivity and productivity. Herein, Ag-O-Ag/graphene and Cu-O-Ag/graphene composite catalysts are proposed to oxidize methane (CH4) to methanol (CH3OH) by using the first-principles calculations. It is shown that reactive oxygen species (μ-O) on both catalysts can activate the C-H bond of CH4, and in addition to CH4 activation, the catalytic activity follows the order of Ag-O-Ag/graphene (singlet) > Ag-O-Ag/graphene (triplet) ≈ Cu-O-Ag/graphene (triplet) > Cu-O-Ag/graphene (singlet). For CH3OH* formation, the catalytic activity follows the order of Cu-O-Ag/graphene (triplet) > Ag-O-Ag/graphene (triplet) > Ag-O-Ag/graphene (singlet) > Cu-O-Ag/graphene (singlet). It can be inferred that the introduction of Cu not only reduces the use of noble metal Ag but also exhibits a catalytic effect comparable to that of the Ag-O-Ag/graphene catalyst. Our findings will provide a new avenue for understanding and designing highly effective catalysts for the direct conversion of CH4 to CH3OH.
Collapse
Affiliation(s)
- Zhiguo Yan
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan430205, P. R. China
| | - Haiquan Xu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan430205, P. R. China
| | - Ling Huang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan430205, P. R. China
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, P. R. China
| | - Shaoping Li
- Hubei Three Gorges Laboratory, Yichang443007, China
| |
Collapse
|
5
|
Hamadi H, Shakerzadeh E, Esrafili MD. Exploring the potential use of Fe-decorated B40 borospherene as a prospective catalyst for oxidation of methane to methanol. J Mol Graph Model 2022; 118:108369. [DOI: 10.1016/j.jmgm.2022.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022]
|
6
|
Sánchez A. Biogas improvement as renewable energy through conversion into methanol: A perspective of new catalysts based on nanomaterials and metal organic frameworks. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In recent years, the high cost and availability of energy sources have boosted the implementation of strategies to obtain different types of renewable energy. Among them, methane contained in biogas from anaerobic digestion has gained special relevance, since it also permits the management of a big amount of organic waste and the capture and long-term storage of carbon. However, methane from biogas presents some problems as energy source: 1) it is a gas, so its storage is costly and complex, 2) it is not pure, being carbon dioxide the main by-product of anaerobic digestion (30%–50%), 3) it is explosive with oxygen under some conditions and 4) it has a high global warming potential (27–30 times that of carbon dioxide). Consequently, the conversion of biogas to methanol is as an attractive way to overcome these problems. This process implies the conversion of both methane and carbon dioxide into methanol in one oxidation and one reduction reaction, respectively. In this dual system, the use of effective and selective catalysts for both reactions is a critical issue. In this regard, nanomaterials embedded in metal organic frameworks have been recently tested for both reactions, with very satisfactory results when compared to traditional materials. In this review paper, the recent configurations of catalysts including nanoparticles as active catalysts and metal organic frameworks as support materials are reviewed and discussed. The main challenges for the future development of this technology are also highlighted, that is, its cost in environmental and economic terms for its development at commercial scale.
Collapse
|
7
|
Mousavian P, Esrafili MD, Sardroodi JJ. A computational study of CH4 storage on Sc functionalized C48B12 heterofullerene. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Mousavian P, Esrafili MD, Sardroodi JJ. Oxidation of methane and ethylene over Al incorporated N-doped graphene: A comparative mechanistic DFT study. J Mol Graph Model 2022; 117:108284. [PMID: 35987185 DOI: 10.1016/j.jmgm.2022.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
It is generally recognized that developing effective methods for selective oxidation of hydrocarbons to generate more useful chemicals is a major challenge for the chemical industry. In the present study, density functional theory calculations are conducted to examine the catalytic partial oxidation of methane (CH4) and ethylene (C2H4) by nitrous oxide (N2O) over Al-incorporated porphyrin-like N-doped graphene (AlN4-Gr). Adsorption energies for the most stable configurations of CH4, C2H4, and N2O molecules over the AlN4-Gr catalyst are determined to be -0.25, -0.64, and -0.40 eV, respectively. According to our findings, N2O can be efficiently split into N2 and Oads species with a negligible activation energy on the AlN4-Gr surface. Meanwhile, CH4 and C2H4 molecules compete for reaction with the activated oxygen atom (Oads) that stays on the surface. The energy barriers for partial methane oxidation through the CH4 + Oads → CH3° + HOads and CH3° + HOads → CH3OH reaction steps are 0.16 eV and 0.27 eV, respectively. Furthermore, the produced CH3OH may be overoxidized by Oads to give formaldehyde and water molecules by overcoming a relatively low activation barrier. The activation barriers for C2H4 epoxidation are small and comparable to those for CH4 oxidation, implying that AlN4-Gr is highly active for both reactions. The high energy barrier for the 1,2-hydrogen shift in the OCH2CH2 intermediate, on the other hand, makes the production of acetaldehyde impossible under normal conditions. According to the population analysis, the AlN4-Gr serves as a strong electron donor to aid in the charge transfer between the Al atom and the Oads moiety, which is necessary for the activation of CH4 and C2H4. The findings of the present study may pave the way for a better understanding of the catalytic oxidation the CH4 and C2H4, as well as for the development of highly efficient noble-metal free catalysts for these reactions.
Collapse
Affiliation(s)
| | - Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran.
| | - Jaber J Sardroodi
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
9
|
Liu Z, Cheng S, Schulman E, Chen W, Vlachos DG, Shu Y, Tran DT, Liu D. Direct non-oxidative methane coupling on vitreous silica supported iron catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Dixit GK, Kumar M, Katiyar A, Jansen APJ, van Bavel AP, Agrawal R, Shenai PM, Srinivasan V. Unraveling the activity of iron carbide clusters embedded in silica for thermocatalytic conversion of methane. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01229k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the detailed mechanism of direct nonoxidative CH4 conversion on iron carbide clusters embedded in silica, revealing that the FeC3 sites generated in situ from FeC2 are mainly responsible for CH4 conversion to CH3 and H2.
Collapse
Affiliation(s)
- Gopal K. Dixit
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Manish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Ankita Katiyar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | | | | | - Ravi Agrawal
- Shell India Markets Pvt. Ltd., Bengaluru, Karnataka 562149, India
| | | | - Varadharajan Srinivasan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
11
|
Mousavian P, Esrafili MD, Sardroodi JJ. Activation of the methane C–H bond by Al- and Ga-doped graphenes: a DFT investigation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03456a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential of Al- and Ge-embedded graphene to activate the C–H bond of CH4 in the presence of a N2O molecule was studied using DFT calculations.
Collapse
Affiliation(s)
| | - Mehdi D. Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran
| | - Jaber J. Sardroodi
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
12
|
Zhuo HY, Zhang X, Liang JX, Yu Q, Xiao H, Li J. Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chem Rev 2020; 120:12315-12341. [PMID: 33112608 DOI: 10.1021/acs.chemrev.0c00818] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research on heterogeneous single-atom catalysts (SACs) has become an emerging frontier in catalysis science because of their advantages in high utilization of noble metals, precisely identified active sites, high selectivity, and tunable activity. Graphene, as a one-atom-thick two-dimensional carbon material with unique structural and electronic properties, has been reported to be a superb support for SACs. Herein, we provide an overview of recent progress in investigations of graphene-based SACs. Among the large number of publications, we will selectively focus on the stability of metal single-atoms (SAs) anchored on different sites of graphene support and the catalytic performances of graphene-based SACs for different chemical reactions, including thermocatalysis and electrocatalysis. We will summarize the fundamental understandings on the electronic structures and their intrinsic connection with catalytic properties of graphene-based SACs, and also provide a brief perspective on the future design of efficient SACs with graphene and graphene-like materials.
Collapse
Affiliation(s)
- Hong-Ying Zhuo
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
| | - Jin-Xia Liang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qi Yu
- School of Materials Science and Engineering, Institute of Graphene at Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Abstract
Methane is a vast hydrocarbon resource around the globe that has the potential to replace petroleum as a raw material and energy source. Therefore, the catalytic conversion of methane into high value-added chemicals is significantly important for the utilization of this hydrocarbon resource. However, this is a great challenge due to the high-energy input required to overcome the reaction barrier. Herein, a highly active catalytic conversion process of methane on an iron dimer anchored on a two-dimensional (2D) C2N monolayer (Fe2@C2N) is reported. Density functional theory calculations reveal that the superior properties of Fe2@C2N can be attributed to the formation of the Fe-O-Fe intermediate with H2O2 as the O-donor molecule, which facilitates the formation of methyl radicals and promotes the conversion of methane. This finding could pave the way toward highly efficient non-precious metal catalysts for methane oxidation reactions.
Collapse
|
14
|
Yin H, Dou Y, Chen S, Zhu Z, Liu P, Zhao H. 2D Electrocatalysts for Converting Earth-Abundant Simple Molecules into Value-Added Commodity Chemicals: Recent Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904870. [PMID: 31573704 DOI: 10.1002/adma.201904870] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The electrocatalytic conversion of earth-abundant simple molecules into value-added commodity chemicals can transform current chemical production regimes with enormous socioeconomic and environmental benefits. For these applications, 2D electrocatalysts have emerged as a new class of high-performance electrocatalyst with massive forward-looking potential. Recent advances in 2D electrocatalysts are reviewed for emerging applications that utilize naturally existing H2 O, N2 , O2 , Cl- (seawater) and CH4 (natural gas) as reactants for nitrogen reduction (N2 → NH3 ), two-electron oxygen reduction (O2 → H2 O2 ), chlorine evolution (Cl- → Cl2 ), and methane partial oxidation (CH4 → CH3 OH) reactions to generate NH3 , H2 O2 , Cl2 , and CH3 OH. The unique 2D features and effective approaches that take advantage of such features to create high-performance 2D electrocatalysts are articulated with emphasis. To benefit the readers and expedite future progress, the challenges facing the future development of 2D electrocatalysts for each of the above reactions and the related perspectives are provided.
Collapse
Affiliation(s)
- Huajie Yin
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Shan Chen
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Zhengju Zhu
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Porun Liu
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
- Centre for Environmental and Energy Nanomaterials, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
15
|
Ketrat S, Maihom T, Treesukul P, Boekfa B, Limtrakul J. Theoretical study of methane adsorption and C─H bond activation over Fe-embedded graphene: Effect of external electric field. J Comput Chem 2019; 40:2819-2826. [PMID: 31471930 DOI: 10.1002/jcc.26058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 11/07/2022]
Abstract
The effect of an external electric field (EF) on the methane adsorption and its activation on iron-embedded graphene (Fe-GPs) are investigated by using the M06-L density functional method. The EF is applied in the perpendicular direction to the graphene in the range of -0.015 to +0.015 a.u. with the interval of 0.005 a.u. The effects of EF on the adsorption, transition state and product complexes of the methane activation reaction are revealed. The binding energies of methane on Fe site in Fe-GPs are increased from -12.9 to -15.3, -18.1 and -21.5 kcal/mol for the negative EF of -0.005, -0.010 and -0.015, respectively. By applying positive EF, the activation barriers for methane activation are reduced in range of 3-8 kcal/mol (around 12-31%) and the reaction energies are more exothermic. The positive EF kinetically favors the reaction compared to the system without EF. The adsorption and activation of methane on Fe-GPs can be easily tuned by adjusting the external electric field for various applications. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sombat Ketrat
- School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Thana Maihom
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21201, Thailand
| | - Piti Treesukul
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Bundet Boekfa
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21201, Thailand
| |
Collapse
|
16
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
17
|
Wu J, Wang L, Yang X, Lv B, Chen J. Support Effect of the Fe/BN Catalyst on Fischer–Tropsch Performances: Role of the Surface B–O Defect. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04864] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianghong Wu
- State
Key Laboratory of Coal Conversion, Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Shanxi Institute of Energy, Jinzhong 030600, China
| | - Liancheng Wang
- State
Key Laboratory of Coal Conversion, Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xi Yang
- State
Key Laboratory of Coal Conversion, Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Baoliang Lv
- State
Key Laboratory of Coal Conversion, Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jiangang Chen
- State
Key Laboratory of Coal Conversion, Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
18
|
Sirijaraensre J, Limtrakul J. Theoretical investigation on reaction pathways for ethylene epoxidation on Ti-decorated graphene. Struct Chem 2017. [DOI: 10.1007/s11224-017-1015-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Tzouras NV, Stamatopoulos IK, Papastavrou AT, Liori AA, Vougioukalakis GC. Sustainable metal catalysis in C H activation. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Schwach P, Pan X, Bao X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem Rev 2017; 117:8497-8520. [DOI: 10.1021/acs.chemrev.6b00715] [Citation(s) in RCA: 656] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre Schwach
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xiulian Pan
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xinhe Bao
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Chemistry
Department, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
21
|
Latimer AA, Kulkarni AR, Aljama H, Montoya JH, Yoo JS, Tsai C, Abild-Pedersen F, Studt F, Nørskov JK. Understanding trends in C-H bond activation in heterogeneous catalysis. NATURE MATERIALS 2017; 16:225-229. [PMID: 27723737 DOI: 10.1038/nmat4760] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.
Collapse
Affiliation(s)
- Allegra A Latimer
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Ambarish R Kulkarni
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Hassan Aljama
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Joseph H Montoya
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jong Suk Yoo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Charlie Tsai
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Felix Studt
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jens K Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
22
|
Impeng S, Siwaipram S, Bureekaew S, Probst M. Ethane C–H bond activation on the Fe(iv)–oxo species in a Zn-based cluster of metal–organic frameworks: a density functional theory study. Phys Chem Chem Phys 2017; 19:3782-3791. [DOI: 10.1039/c6cp07771d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The generation of a Fe(iv)–oxo complex and its reactivity for C–H bond activation of ethane have been theoretically unraveled.
Collapse
Affiliation(s)
- Sarawoot Impeng
- Department of Chemical and Biomolecular Engineering
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - Siwarut Siwaipram
- Department of Chemical and Biomolecular Engineering
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - Sareeya Bureekaew
- Department of Chemical and Biomolecular Engineering
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - Michael Probst
- Institute of Ion Physics and Applied Physics
- University of Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
23
|
Luo H, Li H, Xia Z, Chu Y, Zheng J, Hou Z, Fu Q. Novel insights into l-cysteine adsorption on transition metal doped graphene: influences of the dopant and the vacancy. RSC Adv 2016. [DOI: 10.1039/c5ra25599f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unprotonated l-cysteine is docked on single-vacancy and double-vacancy graphenes doped with transition metals from Sc to Zn. The adsystems exhibit interesting adsorption stability and magnetism.
Collapse
Affiliation(s)
- Huijuan Luo
- State Key Laboratory of Solidification Processing
- Carbon/Carbon Composites Research Centre
- Northwestern Polytechnical University
- Xi'an 710072
- People's Republic of China
| | - Hejun Li
- State Key Laboratory of Solidification Processing
- Carbon/Carbon Composites Research Centre
- Northwestern Polytechnical University
- Xi'an 710072
- People's Republic of China
| | - Zhenhai Xia
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | - Yanhui Chu
- State Key Laboratory of Solidification Processing
- Carbon/Carbon Composites Research Centre
- Northwestern Polytechnical University
- Xi'an 710072
- People's Republic of China
| | - Jiming Zheng
- National Key Laboratory of Photoelectronic Technology and Functional Materials (Cultural Base)
- Institute of Photonics and Photo-technology
- Northwest University
- Xi'an 710069
- PR China
| | - Zhengxiong Hou
- High Performance Computing Centre
- Northwestern Polytechnical University
- Xi'an 710072
- People's Republic of China
| | - Qiangang Fu
- State Key Laboratory of Solidification Processing
- Carbon/Carbon Composites Research Centre
- Northwestern Polytechnical University
- Xi'an 710072
- People's Republic of China
| |
Collapse
|